The Biochemistry of Inorganic Polyphosphates
To the respected memory of
Andrei Nikolaevich Belozersky,
an outstanding scientist,
teacher and man
CONTENTS

Foreword to the First Edition xi
Preface xiii
Acknowledgements xv
Introduction 1

1 The Chemical Structures and Properties of Condensed Inorganic Phosphates 3
1.1 The Structures of Condensed Phosphates 3
1.1.1 Cyclophosphates 4
1.1.2 Polyphosphates 5
1.1.3 Branched Inorganic Phosphates, or ‘Ultraphosphates’ 7
1.2 Some Chemical Properties of Condensed Inorganic Polyphosphates 9
1.3 Physico-Chemical Properties of Condensed Inorganic Polyphosphates 12

2 Methods of Polyphosphate Assay in Biological Materials 15
2.1 Methods of Extraction from Biological Materials 15
2.2 Chromatographic Methods 17
2.3 Colorimetric and Fluorimetric Methods 20
2.4 Cytochemical Methods 22
2.5 X-Ray Energy Dispersive Analysis 24
2.6 31P Nuclear Magnetic Resonance Spectroscopy 26
2.7 Other Physical Methods 31
2.8 Gel Electrophoresis 31
2.9 Enzymatic Methods 33
3 The Occurrence of Polyphosphates in Living Organisms 37

4 The Forms in which Polyphosphates are Present in Cells 45
4.1 Polyphosphate–Cation Complexes 45
4.2 Polyphosphate–Ca\(^{2+}\)–Polyhydroxybutyrate Complexes 46
4.3 Complexes of Polyphosphates with Nucleic Acids 46
4.4 Binding of Polyphosphates with Proteins 50

5 Localization of Polyphosphates in Cells of Prokaryotes and Eukaryotes 53
5.1 Prokaryotes 53
5.2 Eukaryotes 55

6 Enzymes of Polyphosphate Biosynthesis and Degradation 65
6.1 Enzymes of Polyphosphate Biosynthesis 65
6.1.1 Polyphosphate Kinase (Polyphosphate:ADP Phosphotransferase, EC 2.7.4.1) 65
6.1.2 3-Phospho-D-Glyceroyl-Phosphate:Polyphosphate Phosphotransferase (EC 2.7.4.17) 70
6.1.3 Dolichyl-Diphosphate:Polyphosphate Phosphotransferase (EC 2.7.4.20) 71
6.2 Enzymes of Polyphosphate Degradation 73
6.2.1 Polyphosphate-Glucose Phosphotransferase (EC 2.7.1.63) 73
6.2.2 NAD Kinase (ATP:NAD\(^{2+}\)-Phosphotransferase, EC 2.7.1.23) 75
6.2.3 Exopolyphatase (Polyphosphate Phosphohydrolase, EC 3.6.1.11) 75
6.2.4 Adenosine–Tetraphosphate Phosphohydrolase (EC 3.6.1.14) 85
6.2.5 Triphosphatase (Tripolyphosphatase, EC 3.6.1.25) 85
6.2.6 Endopolyphatase (Polyphosphate Depolymerase, EC 3.6.1.10) 86
6.2.7 PolyP:AMP Phosphotransferase 87

7 The Functions of Polyphosphates and Polyphosphate-Dependent Enzymes 91
7.1 Phosphate Reserve 91
7.1.1 In Prokaryotes 92
7.1.2 In Eukaryotes 93
7.2 Energy Source 94
7.2.1 Polyphosphates in Bioenergetics of Prokaryotes 94
7.2.2 Polyphosphate in Bioenergetics of Eukaryotes 95
Contents

7.3 Cations Sequestration and Storage
 7.3.1 In Prokaryotes
 7.3.2 In Eukaryotes
7.4 Participation in Membrane Transport
7.5 Cell Envelope Formation and Function
 7.5.1 Polyphosphates in the Cell Envelopes of Prokaryotes
 7.5.2 Polyphosphates in the Cell Envelopes of Eukaryotes
7.6 Regulation of Enzyme Activities
7.7 Gene Activity Control, Development and Stress Response
 7.7.1 In Prokaryotes
 7.7.2 In Lower Eukaryotes
7.8 The Functions of Polyphosphates in Higher Eukaryotes

8 The Peculiarities of Polyphosphate Metabolism in Different Organisms

8.1 Escherichia coli
 8.1.1 The Dynamics of Polyphosphates under Culture Growth
 8.1.2 The Effects of P_i Limitation and Excess
 8.1.3 The Effects of Mutations on Polyphosphate Levels and Polyphosphate-Metabolizing Enzyme Activities
 8.1.4 The Effects of Nutrition Deficiency and Environmental Stress
8.2 Pseudomonas aeruginosa
8.3 Acinetobacter
8.4 Aerobacter aerogenes (Klebsiella aerogenes)
8.5 Azotobacter
8.6 Cyanobacteria (Blue–Green Algae) and other Photosynthetic Bacteria
8.7 Mycobacteria and Corynebacteria
8.8 Propionibacteria
8.9 Archae
8.10 Yeast
 8.10.1 Yeast Cells Possess Different Polyphosphate Fractions
 8.10.2 The Dynamics of PolyP Fractions during the Cell Cycle
 8.10.3 The Relationship between the Metabolism of Polyphosphates and other Compounds
 8.10.4 Polyphosphate Fractions at Growth on a P_i-Sufficient Medium with Glucose
 8.10.5 The Effects of P_i Limitation and Excess
 8.10.6 The Effects of other Conditions on the Polyphosphate Content in Yeast Cells
 8.10.7 The Effects of Inhibitors on the Polyphosphate Content in Yeast Cells
 8.10.8 The Effects of Mutations on the Content and Chain Lengths of Polyphosphate in Yeast
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.11 Other Fungi (Mould and Mushrooms)</td>
<td>165</td>
</tr>
<tr>
<td>8.12 Algae</td>
<td>167</td>
</tr>
<tr>
<td>8.12.1 Localization and Forms in Cells</td>
<td>167</td>
</tr>
<tr>
<td>8.12.2 The Dynamics of Polyphosphates in the Course of Growth</td>
<td>171</td>
</tr>
<tr>
<td>8.12.3 The Influence of Light and Darkness</td>
<td>172</td>
</tr>
<tr>
<td>8.12.4 The Effects of P_i Limitation and Excess</td>
<td>174</td>
</tr>
<tr>
<td>8.12.5 Changes in Polyphosphate Content under Stress Conditions</td>
<td>175</td>
</tr>
<tr>
<td>8.13 Protozoa</td>
<td>175</td>
</tr>
<tr>
<td>8.14 Higher Plants</td>
<td>177</td>
</tr>
<tr>
<td>8.15 Animals</td>
<td>177</td>
</tr>
</tbody>
</table>

9 Applied Aspects of Polyphosphate Biochemistry 183

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1 Bioremediation of the Environment</td>
<td>183</td>
</tr>
<tr>
<td>9.1.1 Enhanced Biological Phosphate Removal</td>
<td>183</td>
</tr>
<tr>
<td>9.1.2 Removal of Heavy Metals from Waste</td>
<td>186</td>
</tr>
<tr>
<td>9.2 Polyphosphates and Polyphosphate-Metabolizing Enzymes in Assay and Synthesis</td>
<td>186</td>
</tr>
<tr>
<td>9.3 Polyphosphates in Medicine</td>
<td>188</td>
</tr>
<tr>
<td>9.3.1 Antiseptic and Antiviral Agents</td>
<td>188</td>
</tr>
<tr>
<td>9.3.2 Polyphosphate Kinase as a Promising Antimicrobial Target</td>
<td>188</td>
</tr>
<tr>
<td>9.3.3 Polyphosphates as New Biomaterials</td>
<td>189</td>
</tr>
<tr>
<td>9.3.4 Polyphosphates in Bone Therapy and Stomathology</td>
<td>189</td>
</tr>
<tr>
<td>9.4 Polyphosphates in Agriculture</td>
<td>190</td>
</tr>
<tr>
<td>9.5 Polyphosphates in the Food Industry</td>
<td>190</td>
</tr>
</tbody>
</table>

10 Inorganic Polyphosphates in Chemical and Biological Evolution 193

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1 Abiogenic Synthesis of Polyphosphates and Pyrophosphate</td>
<td>194</td>
</tr>
<tr>
<td>10.2 Phosphorus Compounds in Chemical Evolution</td>
<td>195</td>
</tr>
<tr>
<td>10.3 Polyphosphates and Pyrophosphates: Fossil Biochemical Reactions and the Course of Bioenergetic Evolution</td>
<td>198</td>
</tr>
<tr>
<td>10.4 Changes in the Role of Polyphosphates in Organisms at Different Evolutionary Stages</td>
<td>204</td>
</tr>
</tbody>
</table>

References 211

Index of Generic Names 269

Subject Index 275
FOREWORD TO THE FIRST EDITION

The presence of high-molecular-weight polyphosphates in many microorganisms such as yeast, fungi and bacteria, has been known for a long time, but studies on the biochemical functions of these substances are of much more recent origin and still in a rudimentary state. Professor Igor S. Kulaev, one of the most eminent pupils of the late Professor Andrei N. Belozersky, who was an internationally known authority on nucleic acids, has dedicated in his laboratory at the University of Moscow, in conjunction with a large team of collaborators, intensive studies over many years to the somewhat neglected subject of the biochemical functions of polyphosphates. His group has studied the enzymes involved in the synthesis and breakdown of these compounds. There is no doubt that in some cases they can take over the phosphorylation functions of adenosine 5’-triphosphate (ATP), as the phosphate residues are linked together to form energy-rich phosphate bonds.

Professor Kulaev has taken the not inconsiderable trouble of collecting and critically reviewing the large amount of literature now available on the subject in one monograph, at present the only one in existence on this important field of study. With this onerous and time-consuming task, he has rendered a signal service to the international biochemical community, which owes him a large debt of gratitude for this work.

Professor Kulaev has shown that the study of the biochemical functions of the high-molecular-weight polyphosphates is still a very active field of research, offering a great challenge to the enterprising young biochemist in which many discoveries of general importance can still be made.

Professor Emeritus Ernst Chain, FRS
Imperial College of Science and Technology
London
1979
This book is devoted to the current problems of biochemistry of inorganic polyphosphates (PolyPs), linear polymers of orthophosphoric acid, which are important regulatory biopolymers widespread in living organisms. The great progress in the field of PolyP biochemistry over the last 15 to 20 years has contributed much to the appearance of this second edition.

The topics of this text include the following:

- Data on the chemical structure and properties of condensed inorganic phosphates.
- Comparative analysis of the methods of PolyP investigation in biological materials.
- Data on PolyP distribution in living organisms.
- Localization and forms of PolyPs in prokaryotic and eukaryotic cells.
- Characteristics of the known enzymes of PolyP metabolism.
- Description of the functions of PolyPs and PolyP-dependent enzymes, in particular, such important functions as phosphate and energy reservation, sequestration and storage of cations, formation of membrane channels, involvement in cell envelope formation and function, gene activity control, regulation of enzyme activities, participation in stress response, and stationary phase adaptation.

In addition, some chapters will be devoted to such problems as the peculiarities of PolyP metabolism in different organisms, applied aspects of PolyP biochemistry, and a discussion of the possible place of inorganic PolyPs in chemical and biological evolution.

The originality of this present edition lies in a comprehensive presentation of the modern concepts of PolyP biochemistry, including a comparative description of PolyP metabolism in prokaryotes and eukaryotes, i.e. the role of these compounds in the cells of organisms at different stages of evolution, and offers a critical analysis of the methods of isolation and quantitative assessment of these compounds and methods of studying PolyP-dependent enzymes. The contemporary literature on these problems is presented to its maximal extent. The book may therefore serve as a manual for researchers in this field, and in particular, as a textbook.

I. S. Kulaev, V. M. Vagabov and T. V. Kulakovskaya
Moscow Region
Russian Federation
ACKNOWLEDGEMENTS

We are grateful to Prof. Carolyn Slayman of Yale University for allowing the use of their library and fruitful discussion.

Special thanks are due to N. N. Chudinova for her valuable advice on the chapter concerning the chemistry of polyphosphates.

In addition, we wish to thank E. Makeyeva, L. Ledova, I. Kulakovska, and E. Kulakovskaya for their help with the preparation of the manuscript.

We also express our thanks to the Publisher, John Wiley and Sons, Ltd (Chichester, UK) and to their editorial and production staff for enabling publication of this book.
INTRODUCTION

More than one hundred years ago, L. Liberman (1890) found high-polymeric inorganic polyphosphates (PolyPs) in yeast. These compounds are linear polymers containing a few to several hundred residues of orthophosphate (P_i) linked by energy-rich phosphoanhydride bonds.

Taking into consideration their significance for all living organisms, inorganic polyphosphates may be separated into two groups, namely pyrophosphate and high-molecular-weight PolyPs, which contain three to several hundred phosphate residues in one molecule. The functions of pyrophosphate and the enzymes of its metabolism are well distinguished from those of high-molecular-weight PolyPs and to date have been studied quite thoroughly. However, the same does not apply to the high-molecular-weight PolyPs. These mysterious cell components have so far been ignored in most biochemistry manuals. At the same time, a number of reviews (Harold, 1966; Kulaev and Vagabov, 1983; Wood and Clark, 1988; Kornberg, 1995; Kulaev, 1994; Kulaev et al., 1999; Kornberg et al., 1999; Kulaev and Kulakovskaya, 2000), including the special issue of Progress in Molecular and Subcellular Biology (Schröder, H. B. and Müller, W. E. G. (Eds), Vol. 23, 1999), have covered many important aspects of the current research into PolyP biochemistry.

The studies of recent years have greatly changed our ideas of the PolyP function in living organisms. Previously, it was considered either as ‘molecular fossil’ or as only a phosphorus and energy source providing the survival of microorganisms under extreme conditions. After the obtaining of conclusive evidence that these compounds occur in representatives of all kingdoms of living organisms, including the higher animals, it became obvious that PolyPs are necessary for practically all living creatures from different stages of evolution. One would think that these compounds, in the first place, have a regulatory role, participating in metabolism correction and control on both genetic and enzymatic levels. This is why they have not disappeared in the course of evolution of living organisms on the Earth. In recent years, first of all by A. Kornberg and his co-workers (Rao and Kornberg, 1996; Kornberg et al., 1999), it has been established that PolyPs are directly related to the switching-over of the genetic programme characteristic of the logarithmic growth stage of bacteria to the programme of cell survival under stationary conditions – ‘a life in the slow lane’.

Introduction

The discovery by R. Reusch (Reusch and Sadoff, 1988; Reusch, 1992; Reusch, 2000), which proved the involvement of PolyPs in the formation of channels across the cell membranes, extended our previous notions of the function of these compounds. Such channels formed by PolyPs and poly-β-hydroxybutyrate with Ca$^{2+}$ are involved in the transport processes in organisms from different evolution stages.

Surely, the most important function of PolyPs in microorganisms – prokaryotes and the lower eukaryotes, which depend a lot on the changing environmental conditions – is phosphate and energy reservation. In this connection, under certain growth conditions these organisms are able to accumulate PolyPs in much greater amounts than the higher eukaryotes, the dependence of which on external factors is much less due to homeostasis, being strictly regulated by hormones.

The important achievement of recent years has become the finding of non-identical sets of enzymes of PolyP metabolism in different organelles of eukaryotic cells, obtained mainly for yeast (Kulaev and Kulakovskaya, 2000; Lichko et al., 2003a). This result is in favour of considerable distinctions in the physiological role of PolyPs in different compartments of eukaryotic cells.

One of the basic questions, which has only just begun to be investigated, concerns the ways of PolyP involvement in the regulation of gene expression. While there are appreciable achievements for bacterial cells in this direction, elucidation of the role of PolyPs in nuclei is still an important prospective problem for eukaryotes and particularly for the higher representatives of this kingdom.

At the present time, the significance of PolyP investigations for biochemistry in general is now clear. In particular, an effective biotechnology approach as a tool for phosphorus removal from wastewater using polyphosphate-accumulating microorganisms has been developed (Kortstee et al., 1994; Ohtake et al., 1999; Mino, 2000; Keasling et al., 2000). The intense attention of researchers has also been drawn to the solution of several important medical and biological problems associated with polyphosphate biochemistry. First of all, there is a question about the involvement of PolyPs in the mechanisms of pathogenesis of a number of pathogenic microorganisms and the creation of novel drugs. In the opinion of A. Kornberg (1999), one of the targets of novel antimicrobial drugs may be polyphosphate kinase – an enzyme of PolyP biosynthesis in bacteria. Studies of the participation of PolyPs and the enzymes of their metabolism in the regulation of bone tissue development also seem to be promising (Schröder et al., 2000).

Thus, further studies in the field of PolyP biochemistry offer great prospects, which will more than once give unexpected results for elucidating the most important regulatory mechanisms of the living cell.
1
THE CHEMICAL STRUCTURES AND PROPERTIES OF CONDENSED INORGANIC PHOSPHATES

For a proper understanding of the processes which take place in living organisms, a precise knowledge of the chemical structures of the compounds that participate in these processes is required. It is therefore deemed essential to present, even if only briefly, an account of present-day ideas of the chemical structures of condensed phosphates, hitherto often known by the long-obsolete terms ‘metaphosphates’ and ‘hexametaphosphates’.

1.1 The Structures of Condensed Phosphates

The first mention of condensed inorganic phosphates dates back to 1816, when Berzelius showed that the vitreous product formed by the ignition of orthophosphoric acid was able to precipitate proteins (Van Wazer, 1958). Graham (1833) described a vitreous phosphate which he obtained by fusion of NaH₂PO₄. Believing that he had isolated a pure compound with the formula NaPO₃, Graham named this as a ‘metaphosphate’. Shortly afterwards, however, Fleitmann and Hennenberg (1848), working in Liebig’s laboratory, demonstrated that the ‘metaphosphates’ having the general formula MPO₃ (where M is hydrogen or a monovalent metal) were mixtures of closely related compounds which differed mainly in their degree of polymerization. The numerous investigations which were carried out over the next 100 years (for reviews, see: Ebel, 1951; Karbe and Jander, 1942; Teichert and Rinnmann, 1948; Topley, 1949; Van Wazer, 1958), although they provided a wealth of new
data which shed much light on the structures and properties of this group of compounds, threw into perhaps even greater confusion both the chemical basis of the nomenclature of these compounds, and the names of the compounds themselves. This is perhaps hardly surprising, since these investigations were carried out with compounds of inadequate purity, using rather crude investigation methods. It was thanks to the work of Thilo (1950, 1955, 1956, 1959, 1962), Van Wazer (1950, 1958), Ebel (1951, 1952a–d, 1953a,b) and Boulle (1965) that the chemical structures and properties of this group of compounds were finally established, thus making it possible to bring order into their classification (Van Wazer and Griffith, 1955; Thilo and Sonntag, 1957).

According to the current classification, condensed phosphates are divided into cyclophosphates, polyphosphates and branched inorganic phosphates (or ‘ultraphosphates’).

1.1.1 Cyclophosphates

The true cyclophosphates (metaphosphates) have the composition which, since the time of Graham, has been incorrectly assigned to the whole group of condensed phosphates, i.e. MPO₃. These compounds are built up from cyclic anions. Only two representatives of this group have so far been investigated in detail – the cyclotriphosphate, M₃P₃O₉, and the cyclotetraphosphate, M₄P₄O₁₂, shown in Figure 1.1.

The existence of mono- and dimetaphosphates has not been demonstrated in practice, and is theoretically unlikely (Ebel, 1951; Thilo, 1959; Van Wazer, 1958). The possible presence of cyclopentaphosphates and cyclohexaphosphates in a mixture of condensed sodium phosphates was shown by Van Wazer and Karl-Kroupa (1956), followed by Thilo and Schülke (1965). In addition, more highly polymerized cyclic phosphates containing as many as 10 to 15 orthophosphoric acid residues have been observed in some samples of the condensed phosphates prepared by Van Wazer (1958). Furthermore, cyclooctaphosphate (Schülke, 1968; Palkina et al., 1979) and cyclododecaphosphate (Murashova and Chudinova, 1999) have been obtained in the crystalline state.

It should be pointed out that the term ‘hexametaphosphate’, which is frequently encountered in the literature, refers in fact to the compound known as Graham’s salt, which

![Figure 1.1 Structures of (a) cyclotriphosphate and (b) cyclotetraphosphate.](image-url)
The structures of condensed phosphates

Figure 1.2 Structure of a linear condensed phosphate (PolyP), where M is H$^+$ or a monovalent metal cation.

is a mixture of condensed sodium phosphates containing cyclic phosphates (including cyclohexaphosphate), but which is mainly composed of highly polymerized linear polyphosphates (Van Wazer and Griffith, 1955; Thilo and Sonntag, 1957).

1.1.2 Polyphosphates

Polyphosphates (PolyPs) have the general formula $M_{(n+2)}P_nO_{(3n+1)}$. Their anions are composed of chains in which each phosphorus atom is linked to its neighbours through two oxygen atoms, thus forming a linear, unbranched structure which may be represented schematically as shown in Figure 1.2. The degree of polymerization, n, can take values from 2 to 10^6, and as the value of n increases, the composition of the polyphosphates, i.e. the cation-to-phosphorus ratio, approximates to that of the cyclophosphates, which explains the belief which prevailed until recently that ‘polyphosphate’ and ‘metaphosphate’ were equivalent terms. Polyphosphates in which $n = 2–5$ can be obtained in the pure, crystalline state (Van Wazer, 1958), but members of this series in which n has higher values have been obtained in appreciable amounts only in admixtures with each other.

In contrast to the cyclophosphates, they are designated as ‘tripolyphosphates’, ‘tetrapolyphosphates’, etc., although the mono- and dimeric compounds are still called by their old names of ‘orthophosphate’ (P_1) and ‘pyrophosphate’ (PP_1), respectively. In addition, the highly polymeric, water-insoluble potassium polyphosphate ($n \sim 2 \times 10^4$), which has a fibrous structure of the asbestos type, is still called Kurrol’s salt. We may mention in passing that the facile preparation of Kurrol’s salt (by fusion of KH$_2$PO$_4$ at $260\, ^\circ C$), and the ease with which it is converted into the water-soluble sodium form by means of cation-exchange materials, has led to its frequent preparation and use in chemical and biochemical work as an inorganic polyphosphate.

Even better known is Graham’s salt, the vitreous sodium polyphosphate ($n \sim 10^2$) obtained by fusion of NaH$_2$PO$_4$ at 700–800 °C for several hours, followed by rapid cooling. Graham’s salt is a mixture of linear polyphosphates with different chain lengths. Fractional precipitation from aqueous solution by means of acetone (Van Wazer, 1958) affords less heterogeneous fractions with different molecular weights. For example, a sample of Graham’s salt, in which the chains on average have 193 phosphorus atoms (i.e. $n \sim 193$), can be separated by this method, as shown in Figure 1.3.

As can be seen from this Figure, the sample contains molecules of different sizes. The fraction of highest molecular weight has $n \sim 500$, i.e. its molecular weight is of the order of
Chemical structures and properties of inorganic phosphates

Figure 1.3 Distribution curve (by size) obtained for sodium polyphosphate molecules (Graham’s salt, \(n \sim 193 \)) after fractional precipitation, after Van Wazer (1958): (a) cyclic phosphates; (b), (c) and (d) linear polyphosphates.

40 000. It is interesting to note that the reason for the failure of Graham’s salt to crystallize is that it consists of a mixture of homologous chains differing only in their lengths. Since all of the components of the homologous series of polyphosphates closely resemble each other, crystallization cannot take place with ease because molecules of different dimensions seek to displace each other on the growing crystal, thereby bringing its growth to a stop. When the chains are very long (such as is the case in Kurrol’s salt), this does not occur, since the individual chains pass through many elementary cells of the crystal, and the chain length is not an important factor in determining the lattice parameters of the crystal (Van Wazer, 1958).

A second factor which determines the maximum chain lengths of the polyphosphates which are able to crystallize is the increase in polarity of the molecules which takes place as the degree of polymerization increases.

Two factors thus appear to be responsible for the failure so far to obtain linear polyphosphates containing 6–200 phosphorus atoms in a crystalline state: (1) the difficulty of crystallization from a mixture of similar compounds, and (2) the effect of polar groups on the molecules.

In addition to linear polyphosphates, Graham’s salt usually contains very small amounts of cyclophosphates (see Figure 1.3). For example, a sample of Graham’s salt with \(n \sim 100–125 \) was shown by Van Wazer (1958) to contain 4 % of cyclotriphosphate, 2.5 % of cyclotetraphosphate, 0.8 % of cyclopentaphosphate, 0.5 % of cyclohexaphosphate, and fractional percentages of higher polymeric cyclophosphates. The compositions of two samples of Graham’s salt obtained by Dirheimer (1964) are shown in Table 1.1.

The conformations of polyphosphate chains in the crystals depend on the nature of the metal cations. The period of the recurring unit changes depending on the charge, shape and electronic envelope structure of the metal cations. The structures of some crystalline...
The structures of condensed phosphates

Table 1.1 Compositions of synthetic samples of Graham’s salt (Dirheimer, 1964). The phosphorus contents of the poly- and cyclophosphates are expressed as a percentage of the total phosphorus contents of the compounds.

<table>
<thead>
<tr>
<th>Polyphosphates and cyclophosphates</th>
<th>Sample 1</th>
<th>Sample 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-molecular-weight polyphosphate</td>
<td>68.1</td>
<td>75.1</td>
</tr>
<tr>
<td>Polyphosphates ($n \sim 5–10$)</td>
<td>17.3</td>
<td>13.6</td>
</tr>
<tr>
<td>Tetrapolyphosphate plus cyclotriphosphate</td>
<td>7.8</td>
<td>7.0</td>
</tr>
<tr>
<td>Tripolyphosphate</td>
<td>4.5</td>
<td>2.8</td>
</tr>
<tr>
<td>Pyrophosphate</td>
<td>2.3</td>
<td>1.5</td>
</tr>
</tbody>
</table>

polyphosphates with recurrence periods from 2 to 24 phosphate residues are shown in Figure 1.4.

1.1.3 Branched Inorganic Phosphates, or ‘Ultraphosphates’

High-molecular-weight condensed phosphates which, unlike the linear polyphosphates, contain ‘branching points’, i.e. phosphorus atoms which are linked to three rather than two neighbouring phosphorus atoms, are known as branched phosphates (or ‘ultraphosphates’). Such phosphates have a branched structure, a fragment of which is shown in Figure 1.5. In this type of structure, the individual polyphosphate chains are linked to form a ‘network’, which is the reason for the name given to this type of condensed phosphates. The existence of this group of phosphorus compounds was observed in some samples of both Kurrol’s and Graham’s salt, as identified by chemical methods (Van Wazer and Holst, 1950; Strauss and Smith, 1953; Strauss et al., 1955a,b; Thilo, 1956, 1959; Van Wazer, 1958). In samples of Graham’s salt with very long chains (of the order of several hundred phosphorus atoms), approximately one in every thousand phosphorus atoms is a branching point (Strauss and Smith, 1953; Strauss et al., 1953; Strauss and Treitler, 1955a,b). The presence of branching in polyphosphate chains, or in other words, the presence of a reticular structure, can be detected by the decrease in the viscosity of aqueous solutions which occurs following dissolving the compounds in water (owing to the rapid hydrolysis of the lateral bonds, which are very unstable). Figure 1.6 shows how the proportion of lateral bonds in Graham’s salt increases as the chain length is increased.

Although branched phosphates have not yet been found in living organisms (perhaps as a consequence of their unusually rapid hydrolysis in aqueous solution, irrespective of pH, even at room temperature), it is believed that their presence in biological materials cannot be excluded.

Information on the chemical compositions of the condensed inorganic phosphates, together with descriptions of their chemical and physico-chemical properties, can be found in several papers, reviews and monographs (Thilo, 1950, 1955, 1956, 1959; Van Wazer, 1950, 1958; Ebel, 1951; Griffith et al., 1973; Ohashi, 1975; Corbridge, 1980). We shall
Figure 1.4 Structures of various crystalline polyphosphates: (a) \((\text{Na}_2\text{HPO}_3)_n\) (Jost, 1962); (b) \([\text{Na}_3\text{H(PO}_3)_4]_n\) (Jost, 1968); (c) \((\text{NaPO}_3)_n\) (Immirzi and Porzio, 1982); (d) \((\text{KPO}_3)_n\) (Jost and Schulze, 1969); (e) \([\text{Ca}_2(\text{PO}_4)_3]_n\) (Schneider et al., 1985); (f) \([\text{(NH}_4\text{)Cu(PO}_3)_3]_n\) (Tranqui et al., 1969); (g) \([\text{NaMn(PO}_3)_3]_n\) (Murashova and Chudinova, 1997).
dwell here very briefly on those properties of condensed phosphates that are useful for their identification and chemical determination in living organisms.

1.2 Some Chemical Properties of Condensed Inorganic Polyphosphates

Polyphosphates are salts of acids that, in solution, contain two types of hydroxyl groups that differ in their tendency to dissociate. The terminal hydroxyl groups (two per molecule of polyphosphoric acid) are weakly acidic, whereas the intermediate hydroxyl groups, of which there are a number equal to the number of phosphorus atoms in the molecule, are strongly acidic (Van Wazer, 1958). Cyclophosphates do not contain terminal hydroxyl groups and, for this reason, the corresponding acids possess only strongly acidic groups which in solution are dissociated to approximately the same extent. Thus, titration of weakly and strongly acidic groups is a convenient means of determining whether a given condensed phosphate is a cyclo- or a polyphosphate. Moreover, this method provides a means of determining the average chain length of linear polyphosphates (Van Wazer, 1950; Ebel, 1951; Samuelson, 1955; Langen and Liss, 1958a,b; Chernysheva et al., 1971) It is interesting that this was...
the method used by Samuelson (1955) in showing for the first time that Graham’s salt was not a cyclophosphate – as had been believed for almost 100 years – but a mixture of linear polyphosphates.

All alkali metal salts of condensed polyphosphoric acids are soluble in water. Potassium pyrophosphate is especially soluble, with, for example, 100 g of water dissolving 187.4 g of $\text{K}_4\text{P}_2\text{O}_7$ at 25 °C, 207 g at 50 °C, and 240 g at 75 °C. Exceptions to this rule are the water-insoluble Kurrol’s salt (a macromolecular crystalline potassium polyphosphate), and the compounds known as Maddrell’s salts (crystalline sodium polyphosphates of very high molecular weight). Kurrol’s salt is readily soluble in dilute solutions of salts containing cations of univalent metals (but not K^+), for example, 0.2 M NaCl. It is worth mentioning that Graham’s salt dissolves in water only when it is stirred rapidly. Without stirring, the compound forms a glue-like mass in water. Polyphosphates of divalent metals such as Ba^{2+}, Pb^{2+} and Mg^{2+} are either completely insoluble or dissolve to only a very limited extent in aqueous solutions. The polyphosphates of certain organic bases such as guanidine are also sparingly soluble in water (Singh, 1964). Other solvents (liquid ammonia, anhydrous formic acid, and organic solvents such as ethanol and acetone) dissolve only trace amounts of sodium and ammonium polyphosphates. Low-molecular-weight polyphosphates dissolve readily in very dilute aqueous alcoholic solutions, but addition of alcohol to these solutions rapidly reduces their solubility. Figure 1.7 shows that an ethanol–water mixture containing 40 % of ethanol is a very poor solvent for both potassium pyrophosphate and potassium tripolyphosphate (1.5 g per 100 g of solution).

Condensed phosphates, other than branched phosphates, are stable in neutral aqueous solution at room temperature. The hydrolysis of the P–O–P bond in linear polyphosphates such as Graham’s salt liberates energy equivalent to approximately 10 kcal/mol (Yoshida, 1955a,b; Van Wazer, 1958), i.e. the same amount of energy as is liberated in the hydrolysis of the terminal phosphoric anhydride bonds in the adenosine 5′-triphosphate (ATP) molecule. Hydrolysis of the cyclotriphosphate also liberates this same amount of energy (Meyerhof et al., 1953).

![Figure 1.7 Solubility curves for potassium pyrophosphate and potassium tripolyphosphate in ethanol–water mixtures at 25 °C (Van Wazer, 1958).](image-url)
The branching points in branched phosphates, in which one atom is bonded through oxygen to three other phosphorus atoms, are extremely labile. The rate of hydrolysis of the branching points in the reticular phosphates in aqueous solution at 25 °C, resulting in the formation of linear polyphosphates, is about 1000 times greater than that of the P–O–P bonds in the linear polyphosphates. Hydrolysis of the branching points liberates 28 kcal mol\(^{-1}\) (Van Wazer, 1958), which is much more than that liberated in the hydrolysis of the ‘central’ phosphoric anhydride bonds.

The linear polyphosphates and cyclophosphates are hydrolysed extremely slowly at neutral pH and room temperature in comparison with other polyacids such as polyarsenates and polyvanadates, and are unique in this respect. The ‘half-hydrolysis time’ for the P–O–P bonds in linear polyphosphates at pH 7 and 25 °C is several years (Van Wazer, 1958). The rate of hydrolysis of these bonds is increased by raising the temperature, reducing the pH, and by the presence in the solution of colloidal gels and complex cations. The hydrolysis of these bonds is dependent on the ionic strength of the solutions (Van Wazer, 1958).

When neutral solutions of polyphosphates are heated at 60–70 °C for 1 h, they are broken down quantitatively to cyclotriphosphate and orthophosphate. It has been shown that this hydrolysis does not occur randomly, but rather from the end of the polyphosphate chain (Thilo and Wieker, 1957). Thilo (1962) related the formation of cyclotriphosphates during the hydrolysis of linear polyphosphates in neutral solution (and even in non-aqueous solution) to the presence of a particular type of spiral secondary structure which makes it sterically possible for a rearrangement of the bonds to occur within the molecule with the formation of small closed chains (Figure 1.8).

In alkaline solutions, cyclophosphates undergo ring fission, even on gentle warming, to form linear polyphosphates with corresponding chain lengths (Ebel, 1951). Linear polyphosphates also undergo hydrolysis under alkaline conditions (Niemeyer and Richter, 1969, 1972), but more particularly under acidic conditions (pH, 3.5–4.0). Under these conditions, significant hydrolysis of the P–O–P bonds takes place even at room temperature, and here breakdown occurs along the length of the chains rather than from the ends of the chains,

![Figure 1.8](image-url)
Figure 1.8 Illustration of the incomplete hydrolysis of linear high-molecular-weight polyphosphates to cyclotriphosphate and orthophosphate (Thilo, 1956, 1962).
to form polymers with increasingly lower molecular weights, down to orthophosphate. The results of an investigation of the hydrolysis products of Graham’s salt at pH 4.0 and 90 °C are shown in Figure 1.9. It can be seen from this figure that the proportions of the hydrolysis products (linear polyphosphates, cyclophosphates and orthophosphate) are very dependent on the duration of hydrolysis. When the reaction time is increased to 3 h, the higher polymeric polyphosphates disappear altogether, with the mixture consisting entirely of low-molecular-weight poly- and cyclophosphates and orthophosphate. When the pH of the solution is reduced to 1 and below, the extent of hydrolysis of polyphosphates to orthophosphate increases rapidly. Linear polyphosphates such as Graham’s salt are completely hydrolysed after 7-15 min at 100 °C in 1 N HCl (Van Wazer, 1958).

1.3 Physico-Chemical Properties of Condensed Inorganic Polyphosphates

Apart from the low-molecular-weight polyphosphates and cyclophosphates, condensed inorganic phosphates are macromolecular compounds, and this affects their properties and behaviour in solution.

Aqueous solutions of polyphosphates of low ionic strength and pH values near neutral are very viscous, with the viscosity increasing with increasing mean chain length (Malmgren, 1948; Ingelman and Malmgren, 1950; Van Wazer, 1950). The presence of branched phosphates in any given sample of condensed phosphates results, as we have seen, in a very high initial viscosity which decreases rapidly following dissolution in water, even at room temperature (see Figure 1.6).

Polyphosphates in aqueous solutions of low ionic strength are capable of forming complexes with other polymers, especially proteins (Katchman and Van Wazer, 1954), basic polypeptides (Singh, 1964), and nucleic acids (Kulaev and Belozersky, 1958; Ebel et al., 1958c). This ability increases as the chain length of the polyphosphate molecule increases. In acidic solution, these complexes separate as precipitates. The ability of condensed
Physico-chemical properties of condensed inorganic polyphosphates 13

Phosphates to precipitate proteins from acidic solutions has been known from a very early date (Perlmann, 1938; Ebel, 1951; Van Wazer, 1958; Wiame, 1958). It has been shown that this property of polyphosphates is due to a simple total charge, which is dependent on the pH. Katchman and Van Wazer (1954) showed that the higher the molecular weight of a water-soluble protein, then the less polyphosphate is required.

A similar polycation–polyanion interaction is found in the metachromatic reaction, in which high-molecular-weight polyphosphates cause a shift in the absorption maximum of cationic dyes, such as toluidine blue, towards shorter wavelengths (Ebel, 1951; Bergeron and Singer, 1958). This reaction essentially involves polymerization of the dye on the macromolecular anion (Wiame and Lefebvre, 1946; Wiame, 1947a,b). In the case of toluidine blue, addition of polyphosphate to the solution results in a change in colour from blue to violet–red, and a shift in the position of the absorption maximum from 630 nm (which is characteristic of solutions of the monomeric form of toluidine blue) to 530 nm (typical of the complex of polyphosphate and the polymerized dye) (Arloing and Richard, 1921; Damle and Krishnan, 1954; Tewari and Krishnan, 1959; Correll and Tolbert, 1964). However, only comparatively high-molecular-weight polyphosphates are capable of undergoing the metachromatic reaction, either in solution or on paper (Ebel and Muller, 1958; Tewari and Krishnan, 1959; Correll and Tolbert, 1964). Tripoly- and cyclotriphosphates, for example, do not react with toluidine blue (Kornberg, 1956).

Linear polyphosphates possess properties very similar to those of cross-linked, solid ion-exchange agents (Thilo, 1955). The behavior of polyphosphates as dissolved ion-exchange agents is yet further evidence of their ability to form complexes with counter-ions. Polyphosphates are known to be very good complexing agents for many metal ions (Van Wazer, 1958). This property is widely exploited in the fractionation of polyphosphates, and for other analytical purposes.

The information given above concerning the chemical and physico-chemical properties of the inorganic polyphosphates will assist in the better understanding and prediction of the behaviour of these compounds during their extraction from cells and their subsequent fractionation. Knowledge of these properties will facilitate the development and use of efficient and reliable biochemical procedures for the isolation, purification, identification and determination of polyphosphates.
2

METHODS OF POLYPHOSPHATE ASSAY IN BIOLOGICAL MATERIALS

2.1 Methods of Extraction from Biological Materials

The earlier work on the isolation of PolyPs from the cells of living organisms usually employed the same methods as those used for the extraction of nucleic acids. It was not until 1936 that MacFarlane (MacFarlane, 1936) proposed a specific method for the extraction and fractionation of condensed phosphates present in cells. It was found that these phosphates could be divided into two main fractions, i.e. one soluble in 5% trichloroacetic acid (TCA) and the other insoluble, and ever since then cellular condensed polyphosphates have been divided into acid-soluble and acid-insoluble fractions.

Although most workers have used the same extractant, 5% TCA (or occasionally 0.5 M HClO₄), to obtain the acid-soluble fraction, a variety of methods have been used to isolate acid-insoluble condensed phosphates. The most common method of extraction of acid-insoluble PolyPs from cells involves the use of dilute sodium hydroxide solution, pH 9–12 (MacFarlane, 1936; Belozersky, 1955; Belozersky and Kulaev, 1957; Mudd et al., 1958; Krasheninnikov et al., 1968). Widely used methods for the extraction of acid-insoluble PolyPs from biological materials are several variants of the method of Schmidt and Thannhauser, i.e. the use of 1 M potassium hydroxide at 37°C for various periods of time (Schmidt and Thannhauser, 1945; Chaloupka and Babicky, 1957, 1958; Zaitseva et al., 1959; Griffin et al., 1965; Griffin and Penniall, 1966).

In addition, some PolyP fractions can be extracted by hot solutions of acids, either 5% TCA (Wiame, 1947a; Belozersky, 1955; Belozersky and Kulaev, 1957; Bukhovich and...
Belozersky, 1958, 1959; Konovalov, 1960) or 10% perchloric acid, at 80–100 °C (Krishnan et al., 1957; Drews, 1960b; Fedorov, 1961; Harold, 1960, 1962ab; James and Casida, 1964). When this method of extraction was employed, the condensed phosphates are hydrolysed to orthophosphate, the amount of which indicates the amount of condensed phosphates present in the acid-insoluble fraction. Hughes and co-workers (Hughes et al., 1963) used a prolonged (5 h) extraction of acid-insoluble PolyPs with 10% TCA at 20–22 °C. In the author’s opinion, this method ensures an almost complete extraction of acid-insoluble PolyPs from the cells of bacteria and other microorganisms.

Later investigations showed that it was possible to carry out further fractionation of the PolyPs present in biological material depending on the chain length. Such fractionation has been carried out by Langen and Liss in the laboratory of Lohmann (Langen and Liss, 1958ab, 1959; Liss and Langen, 1960, 1962). Their method consists of successive extraction of cells in the cold with 1% TCA, a saturated solution of a salt such as NaClO₄, dilute NaOH solution (pH 10), and a more concentrated solution of alkali (0.05 N NaOH). This method, either in its original version or modified in various ways, has been used extensively for the fractionation of PolyPs from different organisms. Its advantage is that the fractions obtained were localized at different intracellular sites and showed different physiological activity.

Another, and apparently successful, method for the fractionation of PolyPs present in biological material is that developed by Miyachi and co-workers (Miyachi, 1961; Miyachi and Tamiya, 1961; Miyachi and Miyachi, 1961; Miyachi et al., 1964). These researchers successively extracted the PolyPs present in the cells of Chlorella and other organisms with 8% TCA in the cold (fraction A), then with a solution of NaOH, pH 9, in the cold (fraction B), and finally with a 2 N solution of KOH at 37 °C for 18 h. The PolyPs extracted with 2 N KOH by the method of Schmidt and Thannhauser were further separated by Miyachi into two fractions, i.e. one precipitated by neutralization with HClO₄ in the presence of KClO₄ (fraction C) and that which was not precipitated under these conditions (fraction D). The work of Miyachi showed that this mode of fractionation of Chlorella PolyPs yielded fractions which differed in their physiological activity and also apparently cellular location.

It should be pointed out that neither of the methods described above was aimed at obtaining completely unmodified preparations of cellular condensed polyphosphates. Other, much milder, methods of extraction from cells have been developed in order to obtain samples of condensed phosphates, which are as little modified as possible to completely avoid the use of strong acids and alkali.

The mildest methods for the extraction of condensed phosphates are as follows: (i) extraction with hot water (Kornberg and Kornberg, 1954; Chayen et al., 1955; Lohmann and Langen, 1956; Dirheimer and Ebel, 1957; Dirheimer, 1964); (ii) extraction with dilute sodium carbonate solution (Ingelman and Malmgren, 1950; Ebel, 1952a,b); (iii) extraction with hot 2 M sodium chloride solution (Kaltwasser and Schlegel, 1959; Kaltwasser, 1962; Kaltwasser et al., 1962); (iv) extraction with cold distilled water following a preliminary treatment of the material with alcohol and ether (Schmidt et al., 1946; Malmgren, 1949; Ebel, 1952a; Lohmann and Langen, 1956; Dirheimer and Ebel, 1957; Chaloupka and Babicky, 1958; Dirheimer, 1964); (v) extraction with sodium hypochlorite (Harold, 1963b).

On the basis of the work carried out at our laboratory, we consider the extraction method of Langen and Liss (1959) with the modification of Kulaev et al. (1966a) to be one of the best available for the separation and quantitative determination of different PolyP fractions localized at different intracellular sites and apparently displaying
specific physiological roles. PolyPs were most completely extracted from yeast cells by this method (Table 2.1), whereas the method employed by Chernyshova et al. (1971) and Clark et al. (1986) permitted the extraction of only about 80% of PolyPs from biomass. The sequential treatment of yeast cells with cold diluted perchloric acid, salt and weak alkali allowed the isolation of PolyPs with degrees of polymerization from as low as 2 to 8 to as high as 200. Moreover, the former method (Kulaev et al., 1966a) made it possible (see table 2.1) to isolate five PolyP fractions from yeast cells, whose synthesis and degradation are closely related to metabolic processes in individual cell compartments. The extraction of PolyP fractions depends rather on their state or localization in the cell than on the degree of polymerization.

Clark et al. (1986) found that two different extractions were required to isolate all PolyPs from Propionibacterium shermanii, yet these two fractions contained PolyPs of identical size. These authors concluded that one fraction was soluble PolyP, while the second fraction was more tightly complexed in granules. The most frequently used procedure, i.e. extraction with ice-cold trichloroacetic acid (TCA), followed by extraction with alkali, and also the Langen and Liss variation of this procedure, do not extract all PolyPs from P. shermanii or from several other organisms. To demonstrate that the chains were not shortened by the extraction procedure developed for P. shermanii, Clark et al. (1986) included 32P-labelled PolyP during the extraction and then analysed the radioactive PolyP before and after the procedure by using gel electrophoresis. They found that their procedure did not cause PolyP hydrolysis, in contrast to the procedures of Langen and Liss (1959) and Harold (1966). Other procedures that are apparently mild include extraction with hot water, while sodium dodecylsulfate, carbon tetrachloride and phenol/chloroform have been used to extract PolyPs which are apparently located in granules.

For the analysis of PolyPs in activated sludge, some modifications of the extraction method have been developed. Müssig-Zufika et al. (1994) compared various chemical fractionation methods to retrieve intact PolyPs from activated sludge and pure cultures. They concluded that the degree of PolyP hydrolysis during the treatment was strongly dependent on the extraction method being employed. Using the method of Mino et al. (1985) (with cold TCA extraction), 24% of the PolyPs were hydrolysed to Pi, while only 5% and 1% hydrolysis occurred by the methods of Psenner et al. (1984) and Clark et al. (1986), respectively. The ‘Clark method’, which included a cold TCA–acetone extraction step, was not suitable for Gram-positive bacteria and for bacteria from activated sludge due to their cell wall structures. Müssig-Zufika et al. (1994) described a modified extraction method applicable to pure cultures, mixed cultures and activated sludge. This technique was essentially a combination of various extraction methods (including mechanical agitation) and did not result in PolyP hydrolysis, producing intact PolyP chains that could be analysed further.

It should be concluded that PolyP extraction from ‘new’ organisms, where PolyP metabolism has been little studied, needs careful verification of the fullness and intactness of the PolyP chains.

2.2 Chromatographic Methods

Reliable identification of polyphosphates often includes the ‘Thilo and Wicker method’ of chromatographic analysis of the products of partial hydrolysis (Thilo and Wicker, 1957). In this approach, the hydrolysis of condensed phosphates in neutral solution at 60°C yields
Table 2.1
Content (µg Pi/g dry biomass) and degree of polymerization (n) of PolyPs isolated from *S. cerevisiae* cells.\(^{a,b}\)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P(_i)</td>
<td>PolyP</td>
<td>%</td>
</tr>
<tr>
<td>0.5 N HClO(_4); 0 °C; 30 min; PolyP(I)</td>
<td>2890</td>
<td>5857</td>
<td>28.7</td>
</tr>
<tr>
<td>2 % Trichloroacetic acid–acetone; 20 °C; 3 min</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>NaClO(_4); 0 °C; 60 min; PolyP(II)</td>
<td>—</td>
<td>3131</td>
<td>15.3</td>
</tr>
<tr>
<td>2 mM EDTA; pH 7–8; 20 °C; 3 min</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>NaOH; pH 9–10; 0 °C, 30 min; PolyP(III)</td>
<td>—</td>
<td>5323</td>
<td>26.0</td>
</tr>
<tr>
<td>2 mM EDTA; pH 7–8; 20 °C; phenol–chloroform; 5 min</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>NaOH; pH 12; 0 °C, 30 min; PolyP(IV)</td>
<td>—</td>
<td>4759</td>
<td>23.3</td>
</tr>
<tr>
<td>1 % SDS; pH 7.4; 0 °C, 30 min</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>0.5 N HClO(_4); 90 °C; 40 min; PolyP(V)</td>
<td>—</td>
<td>1358</td>
<td>6.7</td>
</tr>
<tr>
<td>Total PolyP</td>
<td>20 428</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Total Pi</td>
<td>33 980</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^{a}\)The data presented are taken from triplicate experiments.

\(^{b}\) ‘—’ indicates not detected.

\(^{c}\) EDTA, ethylenediaminetetraacetic acid; SDS, sodium dodecyl sulfate.
Chromatographic methods

Trimetaphosphate
Tetrametaphosphate
Pentametaphosphate
Hexametaphosphate
Heptametaphosphate
Orthophosphate
Pyrophosphate
Tripolyphosphate
Tetrapolyphosphate
Pentapolyphosphate
Hexapolyphosphate
Heptapolyphosphate

Figure 2.1 Separation of PolyPs and cyclophosphates by two-dimensional paper chromatography. The basic solvent is isopropanol–isobutanol–water–25 % ammonia (40:20:39:1), while the acidic solvent is isopropanol–water–25 % TCA–25 % ammonia (70:30:20:0.3) (Dirheimer, 1964).

cyclotriphosphate and orthophosphate, which are readily identified chromatographically, especially when ‘Ebel’s basic solvent’ is used (Ebel, 1952a).

Ebel and co-workers have developed both paper chromatography (Ebel, 1949, 1951, 1952bc, 1953ab, 1954, 1958; Ebel and Dirheimer, 1957) and column chromatography (Ebel and Bush, 1956; Ebel et al., 1962) techniques for the analysis of PolyPs. Paper chromatographic separation of condensed phosphates only permits the separation and determination of comparatively low-molecular-weight PolyPs and cyclophosphates ($n = 2–9$). Using Ebel’s method of two-dimensional paper chromatography (Ebel, 1952b, 1953ab), it is possible to separate the oligomeric PolyPs and cyclophosphates. An example of such a separation, carried out by Dirheimer (1964), is shown in Figure 2.1.

In addition to paper chromatography, chromatography using ion-exchange resins has been successfully employed. Using this method, it is possible to separate polyphosphates with values of n of 2 to 12 (Figure 2.2). Paper electrophoresis has also been employed to separate oligomeric PolyPs and cyclophosphates, together with thin-layer chromatography (Wade and Morgan 1955; Kulaev and Rozhanets, 1973; Kulaev et al., 1974a,c).

However, these methods are only capable of separating polyphosphates of fairly low molecular weight. Two methods are currently available for the separation of
Methods of polyphosphate assay

20 Methods of polyphosphate assay

Figure 2.2 Separation of PolyPs of low molecular weight by ion-exchange chromatography on Dowex 1 X10 in a KCl gradient. The numbers 1–12 represent the number of phosphorus atoms in the PolyP molecules constituting the various fractions (Matsuhashi, 1963).

high-molecular-weight PolyPs. The first of these is Van Wazer’s method for the fractional precipitation of PolyPs of different chain lengths from aqueous solutions with acetone (Van Wazer, 1958). This technique yields a great number of fractions, which differ from each other in the lengths of the PolyP chains. The second method, also developed in the laboratory of Van Wazer (Ohashi and Van Wazer, 1964), gives similar results to those obtained by paper chromatography. A method for the separation of inorganic PolyPs on Sephadex columns has also been developed in Ebel’s laboratory (Felter et al., 1968). Gel filtration on Sephadex G-10 is a suitable method for the purification of PolyP from P_1 and PP_i (Andreeva and Okorokov, 1993).

Some methods for fast chromatographic separation and detection of PolyPs in food, biological samples or water have been proposed (Halliwell et al., 1996; Baluyot and Hartford, 1996; Svoboda and Schmidt, 1997; Bewlsler et al., 2001). A single-column chromatographic system with indirect UV detection was elaborated, and the dependencies of PolyP retention on the concentrations of pyromellitic acid and ethylenediaminetetraacetic acid (EDTA) in the mobile phase and on the pH of the eluent were determined (Svoboda and Schmidt, 1997). A high performance liquid chromatography (HPLC) method has also been used for the separation of PolyPs (Lorenz and Schröder, 1999).

2.3 Colorimetric and Fluorimetric Methods

One of the simplest methods of estimation of PolyPs in extracts is based on the assay of P_1, which is released from the PolyPs by hydrolysis with 1 M HCl at 90 °C for 10 min. The P_1 released under these conditions is defined as ‘labile phosphorus’. If the compounds containing organic labile phosphorus (i.e. nucleotide phosphates, sugar phosphates, etc.) were removed from the extracts by adsorption on Norit charcoal, the increase in P_1 content after hydrolysis can be attributed to PolyP and pyrophosphate (PP_i). Estimation of the PP_i content (Mansurova, 1989) before hydrolysis may be needed in some cases for more precise calculations of the PolyP content. P_1 may be determined by one of the well-known chemical methods (Fiske and Subarrow, 1925; Weil-Malerbe and Green, 1951).
Figure 2.3 Absorption spectra of (1) toluidine blue (3.3 × 10⁻⁵ M), and dye with three PolyP fractions isolated from *Neurospora crassa* by consecutive treatment with (2) 0.5 N HClO₄ (PolyP(I), 3.3 × 10⁻³ M), (3) saturated NaClO₄ solution (PolyP(II), 3.3 × 10⁻³ M) and (4) 1% SDS, pH 7.4–7.6 (PolyP(III), 3.3 × 10⁻³ M) (see Table 2.1) (Chernysheva *et al.*, 1971).

By precipitating barium salts at different pH values (e.g., 2.5, 4.5 and 7), it is possible to distinguish between the condensed phosphates, which differ in their polymerization degrees or are bound with different compounds in the cell. It is also possible to use organic bases such as guanidine to precipitate polyphosphates selectively from their aqueous solutions. However, a PolyP assay according to the labile phosphorus of barium and other water-insoluble salts is possible but not fully reliable, because not all condensed phosphates are precipitated as barium salts. Oligomeric poly- and cyclophosphates, in particular tripolyphosphate and cyclotriphosphate, are not precipitated by barium at any pH. Again, precipitation by barium salts may result in some degradation of the PolyPs.

The content of long-chain PolyPs may be estimated by measuring the metachromatic effect in the absorption spectrum of toluidine blue (Chernysheva *et al.*, 1971; Leitao *et al.*, 1995; Lorenz and Schröder, 1999). Toluidine blue in an aqueous solution exhibits a concentration-dependent absorption spectrum due to a monomer (λ_{max}, 632 nm)–dimer (λ_{max}, 590 nm) equilibrium. The PolyP induced the maximal shift of the absorption spectrum to 545 nm. Nucleic acids also induce metachromasia, but with a shift of about 570 nm with DNA and 590 nm with RNA. Figure 2.3 demonstrates the typical absorption spectra of toluidine blue and toluidine blue with different preparations of PolyPs (Chernysheva *et al.*, 1971).

The PolyP concentrations in the samples were determined from a calibration graph of the 530/630 nm absorption ratio for standard PolyP solutions (Leitao *et al.*, 1995; Mullan *et al.*, 2002). Samples containing PolyPs were added to the dye solution (6 mg l⁻¹ in 40 mM acetic acid) and the absorption values at 530 nm and 630 nm were determined. The change in the 530/630 nm absorption ratio is roughly proportional to the PolyP concentration over the range 25–75 µM (expressed in P_i). Some disadvantages of the method result from the fact that PolyPs of a chain length less that 10 give only weak or no metachromatic reaction and the interaction between the dye and the PolyP is affected by many compounds, such as different polyanions, cations and proteins, and depends on the ionic strength and pH (Lorenz and Schröder, 1999).
The method used for determination of PolyP, which is based on the Mn$^{2+}$-induced quenching of the fluorescence of the calcium indicator Fura-2, has been described (Lorenz et al., 1997a). The effect of Mn$^{2+}$ ions on the Fura-2 fluorescence is gradually removed in the presence of increasing PolyPs concentrations; this allows the quantification of PolyPs isolated from tissues or cells. The described method has some advantages when compared with the conventional detection procedures based on the metachromatic effect. It can be applied to the determination of pyrophosphate, tripolyphosphate and other short-chain PolyPs not detectable by toluidine blue (Lorenz et al., 1997a).

2.4 Cytochemical Methods

The oldest and most extensively used method for determination of PolyPs in biological materials, although of course the least accurate, is based on the staining of cells and tissues by certain basic dyes such as toluidine blue, neutral red and methylene blue. The presence of condensed phosphates in the organisms is judged by the appearance in the cells of metachromatically stained granules, or volutin granules.

Two basic principles are involved in metachromasia: first, the interaction between dye and substrate molecules, and secondly, the interaction between adjusted dye molecules aggregated to the substrate. A striking change in the absorption spectrum of a metachromatic dye in the presence of polyelectrolyte is generally characteristic of the specific nature of the polymer. For example, such changes have been related to the chain length, conformation and the functional group of an individual polymer. The interaction between the dye and the polymer is influenced by experimental conditions such as pH, temperature, ionic strength, and the molar ratio of the polymer residues to the dye molecules.

When ‘Loeffler’s methylene blue’ is used, the PolyP-containing granules appear pink–violet on the blue background of the cells (Murray et al., 1994), while ‘Neisser staining method’ gives purple–black granules on the yellowish-brown background of the counterstained cells (Bartholomew, 1981). Neisser staining is more suitable for determining PolyP accumulation than Loeffler’s method because of its higher contrast between the granule and the cell (Serafim et al., 2002). Toluidine blue, which shares the same metachromatic properties as methylene blue, can also stain PolyP granules.

The staining by basic dyes such as methylene blue, toluidine blue and neutral red has been used for the detection of PolyPs in living organisms for a long time (Wiame, 1946, 1947a,b, 1948, 1949, 1958; Macary, 1951; Widra, 1959; Drews, 1960 a,b; Ebel, 1952d; Ebel et al., 1955, 1958a,b; Ebel and Mehr, 1957; Ebel and Muller, 1958; Tewari and Krishnan, 1959; Proko‘eva-Bel’govskaya and Kats, 1960; Dmitrieva and Bekker, 1962; Voelz et al., 1966; Tijssen et al., 1982; Lopez-Revilla and Gomez-Domínguez, 1985; Suresh et al., 1985) and up to date has been one of the simplest and cheapest PolyP visualizing methods (Rees et al., 1992; Leitao et al., 1995; Imsiecke et al., 1996; Serafim et al., 2002). PolyP staining first showed the presence of characteristic granule clusters in activated sludge and suggested the existence in them of PolyP-accumulating bacteria (Fuhs and Chen, 1975). The staining method of PolyP detection is often used in the study of polyphosphate-accumulating microorganisms of activated sludge (Suresh et al., 1985; Rees et al., 1992; Serafim et al., 2002).
It should be noted, however, that, despite the fact that in most cases the cytochemical detection of metachromatic granules is associated with the actual presence of PolyPs in the organism, such methods must nevertheless be carried out with great caution. This is primarily due to the fact that basic dyes are also capable of staining other polymeric compounds present in the cells.

Some methods for the differential staining of PolyPs and polyhydroxyalkanoate-containing granules in cells have been developed (Rees et al., 1992) and critically analysed in a recent review (Serafim et al., 2002). The staining by Nile blue or Sudan black, which do not stain PolyP granules, or sequential staining with Nile blue and methylene blue allows a differentiation of the two types of granules in some cases. Thus, the cytochemical distinguishing of cell inclusions is still an interesting, but not simple, experimental task.

The more sensitive and convenient method of PolyP detection in situ is fluorescence microscopy using fluorochromes of the type 4′,6′-diamino-2-phenylindole.2HCl (DAPI), which is commonly used for DNA detection. At a high concentration (50 mg ml\(^{-1}\)), it also stains PolyP granules and lipid inclusions (Allan and Miller, 1980; Tijssen et al., 1982; Streichan et al., 1990). DAPI–DNA fluorescence is blue–white, while DAPI–PolyP and DAPI–lipid fluorescence is yellow. The lipid fluorescence is weak and fades in a few seconds, while the PolyP granules appear bright yellow, thus allowing discrimination of the above types of cell inclusions (Streichan et al., 1990).

The excitation wavelength for DAPI is 330–385 nm. The emission maximum of DAPI is 456 nm; different polyaniones, such as DNA or poly(glutamic acid), induced a strong increase in the fluorescence intensity depending on the concentration. PolyPs showed, however, a shift of the fluorescence maximum to 525 nm (Figure 2.4).

![Figure 2.4](image-url)
Figure 2.4 Fluorescence spectra of DAPI (4′,6′-diamino-2-phenylindole) in 3 mM tris-maleate, pH 5.0: (a) 0.2 µg ml\(^{-1}\) DAPI; (b) 0.2 µg ml\(^{-1}\) DAPI plus 10 µg ml\(^{-1}\) PolyP\(_{200}\) (Tijssen et al., 1982).
Methods of polyphosphate assay

DAPI staining was used for identification of vacuolar PolyPs (Allan and Miller, 1980) and cell-surface PolyPs (Tijssen et al., 1982) of yeast. This method is commonly used in the identification of PolyP-accumulating microorganisms from activated sludge during the study of Enhanced Biological Phosphorus Removal (EBPR) (Serafim et al., 2002). The DAPI–PolyP staining has often been used in studies of EBPR because of the possibility to combine this procedure with in situ molecular identification (FISH analysis). In the latter analysis, the 16S rRNA fluorescent probes specifically bind with the target bacteria (Wagner, et al., 1994; Bond and Rees, 1999; Bond et al., 1999; Kawaharasaki et al., 1999; Crocetti et al., 2000). They appear as fluorescent cells, and bacteria belonging to a specific taxonomic group may be identified in mixed biomass such as activated sludge. Procedures that combine FISH with methylene blue staining (Crocetti et al., 2000) or with DAPI staining (Kawaharasaki et al., 1999) allow visualization of PolyP granules in taxonomically identified cells. The sequential FISH, DAPI and polyhydroxyalcanoates (PHAs) staining methods have been described (Liu et al., 2001). It should be noted that further studies of various samples and adequate conditions are required to check the reliability of these new cytochemical approaches.

2.5 X-Ray Energy Dispersive Analysis

PolyP-containing deposits in cells are also visualized by electron microscopy as electron-dense regions, and when such microscopy is combined with X-ray energy dispersive analysis, it is possible to detect the phosphorus, presumably present as PolyPs, and metal cations such as Na, K, Ca, Mg, Mn, Zn, Ba and Al. Such analyses are useful to identify the metal composition of PolyP granules and to obtain evidence of PolyP involvement in cation chelation. In a number of studies, this method was successfully used for the detection and chemical analysis of PolyP granules in various organisms (Ashford et al., 1975; Callow et al., 1978; Adamec et al., 1979; Doonan et al., 1979; Baxter and Jensen, 1980a; Scherer and Bochem, 1983; Voršek and Zahleder, 1984; Pettersson et al., 1985; Ogawa and Amano, 1987; Väre, 1990; Ashford et al., 1999; Ramesh et al., 2000; Schonborn et al., 2001).

Interesting data on the structure and formation of PolyP granules in cyanobacteria were obtained by electron microscopic and cytochemical methods (Jensen, 1968, 1969; Jensen and Sicko, 1974; Sicko-Goad et al., 1975; Jensen et al., 1982).

The study of microbial cell granules by X-ray dispersive analysis revealed that the composition of the granules changed markedly depending on the chemical and ionic composition of the culture medium. For example, the quantitative ratios of Ca, Mg and K in PolyP granules of bacteria in wastewaters varied depending on the influence concentrations of these metal cations (Schonborn et al., 2001). The quantitative X-ray analysis of laboratory grown cyanobacterium Plectonema boryanum and bacterium Staphylococcus aureus revealed that typical in vivo PolyP bodies contain (in µg): O (4.3 × 10⁻⁸), C (1.2 × 10⁻⁸), P (6.7 × 10⁻⁹), Mg (1.3 × 10⁻⁸), Ca (6.7 × 10⁻¹⁰), K (6.7 × 10⁻¹⁰), Fe (6.0 × 10⁻¹⁰), S (5.4 × 10⁻¹⁰) and Al (5.9 × 10⁻¹⁰) (Goldberg et al., 2001).

This method has often been used in the investigation of PolyPs in mycorrhiza fungi (Ashford et al., 1975; Callow et al., 1978; Orlovich and Ashford, 1993; Bucking et al., 1998; Ashford et al., 1999). For example, an energy dispersive X-ray spectrum from a
The elemental compositions of vacuolar granules in different ectomycorrhizal fungi, *Pisolithus tinctorius*, *Suillus bovinus* and *Xerocomus badius* (Bucking et al., 1998), were determined by electron energy loss spectroscopy (EELS) and energy dispersive X-ray spectroscopy (EDXS). The investigations dealt with the advantages and limitations of the EDXS and EELS techniques with respect to the determination of elemental compositions of vacuolar granules and the effect of different specimen preparation techniques. Axenic cultures of these fungi, as well as field mycorrhizae, were used for the analysis. The results, after conventional chemical fixation and dehydration of the material, were compared with those obtained after cryofixation followed by freeze-drying of the samples. Light microscopic studies were also carried out to control the occurrence of vacuolar granules in living hyphae. The results showed that vacuolar granules existed in the living hyphae of different ectomycorrhizal fungi and were not an artifact of the fixation or other specimen preparation procedures of the cells. EDXS and EELS differed in their ability to detect the elemental compositions of these granules. Both analytical techniques found phosphorus in the vacuolar bodies, which indicates a deposition of polyphosphates. PolyP granules are strongly negative polyanions, which contain different cations to balance the negative charge. These cations were often difficult to determine by EELS and could only be shown by EDXS, but the cations varied considerably depending on the technique used for specimen preparation. In chemically fixed and dehydrated material, Mg, K and Ca, in particular, were detected in the granules. However, measurements of cryofixed and freeze-dried specimens showed that the most abundant cations in PolyP granules were K and Mg and the incorporation of Ca has to be interpreted as a result of the chemical specimen preparation (Bucking et al., 1998).

All known work revealed that the compositions of PolyP granules changed markedly depending on the chemical, and in the first place, ionic composition of the culture medium. However, strictly speaking, this method of PolyP identification is not universally appropriate. First, it identifies the presence in granules of phosphate but not phosphoryl groups and secondly, it does not detect any PolyP if its concentration is not high enough. It should be noted that the phosphate-containing granules might consist not only of PolyPs but also of

Figure 2.5 Energy dispersive X-ray spectrum obtained from a spherical electron-opaque granule of the fungus *Pisolithus tinctorius*, showing peaks for P and Ca (Orlovich and Ashford, 1993).
other phosphorus compounds. For example, the sulfate-reducing bacterium *Desulfovibrio gigas* forms electron-dense granules in the cells. Energy dispersive X-ray analysis of the granules in the cells showed that they contain large amounts of P, Mg and K. Gel electrophoresis, 31P nuclear magnetic resonance (NMR) spectroscopy and chromatographic analyses of isolated granules revealed that they contained, instead of PolyPs, a novel metabolite, which was identified as alpha-glucose 1,2,3,4,6-pentakis(diphosphate) (Hensgens et al., 1996).

Therefore, the identification of PolyPs by X-ray techniques in some cases needs confirmation by using other physico-chemical methods.

2.6 31P Nuclear Magnetic Resonance Spectroscopy

Nuclear magnetic resonance (NMR) spectroscopy is a well-established method in the study of phosphorus metabolism (Glonek et al., 1971; Salhany et al., 1975; Burt et al., 1977; Ugurbil et al., 1978; Navon et al., 1977a,b, 1979; Ferguson et al., 1978; Ostrovsky et al., 1980; Gadian, 1982; Sianoudis et al., 1986; Roberts, 1987; Shanks and Bailey, 1988; Chen, 1999). *In vivo* 31P NMR spectroscopy remains unique, being the least disruptive and quantitative method (Gadian, 1982; Roberts, 1987; Chen, 1999).

The basic principle of the nuclear magnetic resonance (NMR) spectroscopic technique involves measurement of the ratio frequency (rf) of the energy adsorbed by magnetic nuclei (Roberts, 1987; Chen, 1999). NMR spectroscopy is a useful tool in analytical chemistry for the detection, identification and structure elucidation of compounds. Phosphorus compounds of living cells include phosphates, phosphonates and various esters of phosphates and phosphonates. The chemical shift of 31P atoms in these compounds can span over a 30 ppm range, thus making 31P-NMR spectroscopy an attractive tool for examining phosphorus metabolites in microorganisms, plants and animal tissues. In addition, the method has no problem of solvent suppression, since no water signal appears in the 31P resonance region. The common chemical shifts of biological phosphorus compounds are shown in Figure 2.6. The simplicity of the 31P NMR spectrum, usually containing 8–12 resonances,
is due to the fact that narrow signals are generated only from relatively mobile compounds. Insoluble or immobilized compounds, such as membrane phospholipids, usually give very broad signals that are ‘NMR-invisible’ or appear as broad components underlying the narrow metabolite signals.

NMR spectroscopy can provide information about cellular compartmentalization of metabolites. For instance, compartmentalization of Pi in yeast is reflected by a split signal for Pi in the NMR spectrum, presumably the consequence of pH difference between the compartments (Navon et al., 1979; Gillies et al., 1981; Nicolay et al., 1982, 1983). These pH-induced shifts of the NMR signal, which reflect changes in the environment of the nucleus, are determined by the pK_a of the compound, because each of the ionized forms of Pi has a unique electron structure and therefore a unique chemical shift (Gillies et al., 1981). So, NMR spectroscopy can be used to study the structure of phosphate compounds and to examine their metabolism and native environment in biological samples, including intact cells. Thus, intracellular pH homeostasis may be studied by 31P NMR spectroscopy (Gillies et al., 1981; Nicolay et al., 1982, 1983; Hesse et al., 2002).

PolyP NMR spectra have been widely investigated (Glonek et al., 1971; Salhany et al., 1975; Burt et al., 1977, Navon et al., 1977a,b; Ugurbi et al., 1978; Ferguson et al., 1978; Ostrovsky et al., 1980; Tijssen and Van Steveninck, 1984; Roberts, 1987; Chen, 1999). This polymeric species gives three resonance peaks: terminal P (PP1), at about -6.62 to -7 ppm; penultimate P (PP2–PP3) at about -20.17 to -21.7 ppm; middle P (PP4) at about -22.37 to -22.5 ppm.

Figure 2.7 shows a typical 31P NMR spectrum of S. cerevisiae cells assigned from previous work in the literature (Nicolay et al., 1982; Shanks and Bailey, 1988; Beauvoit et al., 1989, 1991; Gonzalez et al., 2000). The resonances from 4.5 to 3 ppm are in the sugar phosphate region. Cytoplasmic (P_{cyt}) and extracellular (P_{ex}) Pi give resonances at 1.62 and 0.68 ppm, respectively. The left shoulder on the extracellular Pi peak could be due to Pi in the vacuoles. The resonance at -1.34 ppm is from phosphomannan. The resonance at -5.39 ppm was assigned to the γ-phosphate groups of nucleoside triphosphate and the β-phosphate groups of nucleoside diphosphate, at -10.05 ppm to the α-phosphate groups of nucleoside phosphates, and at -18.90 ppm to the β-phosphate groups of nucleoside triphosphate, respectively. The point at -10.66 ppm includes both NAD and NAD(H). The peak PP1 (-6.62 ppm) is the sum of PP2, and the terminal phosphate groups of PolyP. The points PP2 (-18.00 ppm) and PP3 (-20.17 ppm represent) penultimate phosphates from PolyP, while PP4 (-22.37 ppm) represents the middle phosphate from longer PolyPs. Using the employed integrated NMR bioreactor system, an excellent in vivo 31P NMR spectrum was obtained, and a clear phosphoenolpyruvate signal could be detected in addition to the commonly observed peaks in S. cerevisiae (Gonzalez et al., 2000).

The peak intensity can be used to calculate the concentration or chain length of linear PolyPs. With regard to the quantitative determination of PolyPs by using the NMR spectroscopic method, it was shown (Krupyanko et al., 1998) that the total intensity of core phosphate groups is proportional to the concentration of each individual PolyP with a certain chain length, but no proportional correlation was observed during the transitions between PolyPs with a small number of phosphate groups and PolyPs with a large number of these groups.

From the signal intensities of the terminal and middle phosphate groups, the chain lengths of the PolyPs can be determined according to Equation (2.1), where n represents the average...
Methods of polyphosphate assay

Figure 2.7 The 31P NMR spectrum at 202.46 MHz of *S. cerevisiae* (adapted from Nicolay *et al.*, 1982; Shanks and Bailey, 1988; Beauvoit *et al.*, 1991; Gonzales *et al.*, 2000): SP, sugar phosphate; Picyt, cytoplasmic Pi; Piex, extracellular Pi; Piv, vacuolar Pi; PM, phosphomannan; NTPα and NDPα, α-phosphate groups of nucleoside triphosphates and nucleoside diphosphates, respectively; NTPβ and NDPβ, β-phosphate groups of nucleoside triphosphates and nucleoside diphosphates, respectively; NTPγ, γ-phosphate group of nucleoside triphosphates; PP1, pyrophosphate and terminal phosphate of PolyP; NAD(H), nicotinamide adenine dinucleotide; UDPG, uridinediphosphoglucose; PEP, phosphoenolpyruvate; PP2 and PP3, penultimate phosphates of PolyP; PP4, middle phosphates of PolyP.

The reported data (Nicolay *et al.*, 1982; Pilatus *et al.*, 1989) show that the signal intensity of the middle phosphate groups is proportional to the PolyP concentration. However, there is no proportionality in the signals from PolyPs with different chain lengths: the contribution of the middle phosphate groups to the total signal intensity in 31P NMR spectra decreases with the increasing length of the PolyP chain.

A special investigation was carried out to check the correlation between the decrease in the 31P NMR signal intensity of the middle phosphate groups and the chain length, and to obtain an equation describing this dependence, thus making it possible to take this effect into account.

The equation is given by:

\[
\frac{3 \times [PP1] + [PP4]}{[PP1]} = 2 \left(\frac{3 \times [PP1] + [PP4]}{[PP1]} \right)
\]

where \(n\) is the chain length, [PP1] the terminal phosphate groups signal intensity, and [PP4] the middle phosphate groups signal intensity, respectively (Pilatus *et al.*, 1989):

\[
\frac{3 \times [PP1] + [PP4]}{[PP1]} = 2 \left(\frac{3 \times [PP1] + [PP4]}{[PP1]} \right)
\]
Figure 2.8 Concentration-dependence of the signal intensity ratio of the chemical shifts of core phosphate groups of linear PolyPs relative to the signal intensity of a standard P_i sample. PolyP samples with the following numbers of middle phosphate groups (n_c) in the molecules were used: (1) 204; (2) 115; (3) 58; (4) 35; (5) 11; (6) 3. The concentrations of PolyP in the samples were estimated from the amount of P_i liberated following hydrolysis in 2 N HCl after 10 min at 100°C (Krupyanko et al., 1998).

Figure 2.9 Changes in the slope angles of the experimental plots shown in Figure 2.8 (tg(α_{exp})) and theoretically from Equation (2.2) (tg(α_{calc})) as a function of the number of middle phosphate groups in PolyP molecules (n_c): (o) experimental data; (●) theoretical data obtained from Equation (2.2) (Krupyanko et al., 1998).

into account in PolyPs assays of biological samples (Krupyanko et al., 1998). Synthetic linear PolyPs were used for this study after chromatographic purification on Sephadex G-75. The experimental results and theoretical data are compared in Figures 2.8 and 2.9. The concentration-dependence of the ratio of the signal intensity of the middle phosphate groups (SP_c) of PolyPs to the signal intensity of a standard P_i sample (SP_{st}) is shown in Figure 2.8. It can be seen that the contribution of the middle (n_c) groups to the total intensity of the P peaks decreases with an increase in the PolyP chain length. This is manifested by a disproportionately greater increase in the slope angle (tg(α)) of the experimental plots with
an increase in the chain length of the PolyPs (Figure 2.9):

\[
tg(\alpha) = \frac{SP_c}{SP_{st}}C
\]

(2.2)

In the above equation, \(SP_c\) is the total intensity (peak area) of signals from the middle phosphate groups, \(SP_{st}\) is the standard \(P_i\) signal intensity, and \(C\) is the PolyP concentration, expressed in mg \(P_i\) per ml. The effect of reduction of the contribution of inner phosphate groups to the total intensity of the \(P_c\) signals is obviously associated with the primary and secondary structures of PolyPs.

From the experimental data (Figure 2.9), the following equation was derived (where \(n_c\) is the number of monomeric phosphate groups in the PolyP molecule):

\[
tg(\alpha) = 5.838n_c + 0.005n_c + 1.664
\]

(2.3)

The experimental data correspond well to the theoretical calculation of \(tg(\alpha)\) obtained from Equation (2.3). With regard to the quantitative determination of PolyP and PolyP chain length by using NMR spectroscopy, it must be taken into account that the total intensity of the middle phosphate groups is proportional to the concentration of each individual PolyPs with a certain chain length, but no proportional correlation is observed during the transitions between PolyPs with a small number of phosphate groups and PolyPs with a large number of these groups. The contribution of PP4 groups to the total intensity of the peak decreases with an increase in the PolyP chain length. By using Equations (2.2) and (2.3), the chain lengths of PolyP samples may be defined more accurately.

The \(^{31}\)P NMR spectroscopic technique was used for the detection and study of PolyPs in different organisms, including bacteria (Navon et al., 1977b; Ferguson et al., 1978; Rao et al., 1985; Suresh et al., 1985; Kjeldstad and Johnson, 1987; Kjeldstad et al., 1988; Lawrence et al., 1998), yeast (Den Hollander et al., 1981; Greenfeld et al., 1987; Holahan et al., 1988; Bourne, 1990; Loureiro-Dias and Santos, 1990; Beauvoit et al., 1991; Castro et al., 1995, 1999; Vagabov et al., 1998, 2000; Gonzalez et al., 2000; Trilisenko et al., 2002), fungi (Yang et al., 1993; Pilatus et al., 1989; Hesse et al., 2002), algae (Elgavish and Elgavish, 1980; Elgavish et al., 1980; Stanoudis et al., 1986; Lundberg et al., 1989; Bental et al., 1990), and protozoa (Moreno et al., 2000). PolyPs were also observed by this method in soils (Adams and Byrne, 1989). One of the advantages of NMR spectroscopy is the possibility of observing changes in the PolyP signals of living cells. Such an approach is widely used and gives important information about the PolyP dynamics under different conditions (Suresh et al., 1985; Zhang and Majidi, 1994).

PolyPs, which can be detected by NMR spectroscopy are called ‘NMR-visible’, and represent a more mobile fraction of the total PolyP content. Lack of an ‘NMR-visible’ PolyP signal does not indicate the absence of PolyPs in a sample. Accurate values of the chemical shifts of these signals depend on the pH and residual concentrations of divalent cations in the extract (Pilatus et al., 1989).

The intensities of the signals in the study of PolyPs by using \(^{31}\)P NMR spectroscopy directly depend on the degree of PolyP binding with other structures and compounds of
the cell, in particular, with metal ions. Therefore, while the detection of a PolyP signal indicates the presence of these compounds in the cell, the absence of this signal still cannot be considered as direct evidence for the absence for PolyPs, as was well described in the work using *Chlorella fusca* (Sianoudis et al., 1986).

In some microorganisms of aerobically activated sludge, the NMR resonance characteristics of PolyPs were only observed when the cell structure was disrupted by treating with a strong alkali (Pereira et al., 1996).

The interaction with cations lays the basis for the 31P NMR spectroscopic method, allowing one to distinguish between extracellular and intracellular pools of PolyPs. Ethylenediaminetetraacetic acid (EDTA) can be used to complex the divalent cations bound to PolyPs and to produce a new 31P NMR shift. However, because the cell membrane is impermeable to EDTA, only extracellular PolyPs is affected. This method was used successfully on a cell suspension of *Propionibacterium* sp. (Serafim et al., 2002).

Thus, authors often apply the term ‘visible’ PolyPs when discussing the results obtained by this method (Loureiro-Dias and Santos, 1990). It can be considered that the most reliable approach is the combination of PolyP chain length determination by NMR spectroscopy with the method of chemical extraction from cells and their quantitative analysis.

The above approach allowed determination of the content and polymerization degree of PolyPs in volutin granules (Jacobson et al., 1982), in vacuoles (Trilisenko et al., 2002), and in different PolyP fractions obtained from yeast cells (Vagabov et al., 1998, 2000). As an example, Figure 2.10 shows the 31P NMR spectra of the acid-soluble PolyPs from isolated yeast vacuoles.

Thus, the NMR approach gives a most precise picture of the PolyP content and polymerization degree in different cell compartments by a combination of NMR spectroscopy with the methods of sub-cellular fractionation and chemical extraction of PolyPs.

2.7 Other Physical Methods

Infrared spectroscopy has been rarely used for PolyP characterization (Datema et al., 1977). Electrospray ionization mass spectrometry (ESI–MS) has been applied to the characterization of phosphates (P_1, PP_1, PolyP$_3$, PolyP$_4$, and tricyclopohosphate). The high selectivity of ESI–MS allowed the detection of these compounds without any pre-separation by ion chromatography or capillary electrophoresis. The limits of detection for ESI–MS were estimated to be in the range from approximately 1 to 10 ng ml$^{-1}$ (Choi et al., 2000).

2.8 Gel Electrophoresis

One of the most effective and widely used methods for PolyP separation is gel electrophoresis. This technique was adapted for PolyPs by Robinson et al. (1984, 1987) and Pepin et al., 1986. Electrophoresis in 15–20 % polyacrylamide gel allows PolyP resolution up to a chain length of 100–200 phosphate residues. A mixture of 90 mM trisborate (pH 8.3) with 2.7 mM
Methods of polyphosphate assay

Figure 2.10 NMR spectra of acid-soluble PolyPs extracted from vacuoles of yeast (*Saccharomyces cerevisiae*): (a) PolyP precipitated from the extract with Ba$^{2+}$ at pH 8.2; (b) PolyP precipitated from the extract with Ba$^{2+}$ at pH 4.5: 1, middle phosphate groups; 2, ‘pre-terminal’ phosphate groups; 3, terminal phosphate groups; 4, γ-phosphate groups of nucleoside triphosphates; 5, P$_i$ (Trilisenko et al., 2002).

EDTA and 7 M urea is normally used (Robinson et al., 1984, 1987; Clark and Wood, 1987; Lorenz et al., 1994b). The gels were stained with 0.05 % toluidine blue, 25 % methanol and 1 % glycerol, followed by ‘de-staining’ in 25 % methanol and 5 % glycerol (Pepin and Wood, 1986), or radioactive PolyPs were detected by autoradiography. A typical example of the gel electrophoresis of a number of commercial PolyP preparations (Monsanto and Sigma) in 15 % polyacrylamide gel is shown on Figure 2.11.

PolyPs with longer chains can be separated by using low-percentage polyacrylamide gels for PolyPs of 800 residues or agarose gels for PolyPs with chain lengths of 500–1700 residues (Clark and Wood, 1987). A preparative procedure to obtain PolyPs of limited chain lengths by using electrophoresis was developed by Pepin and Wood (1986).
Enzymatic methods

Figure 2.11 Electrophoresis of PolyPs with average chain lengths of (a) 15, (b) 25, (c) 45 (Sigma) and (d) 188 (Monsanto) phosphate residues in 20 % polyacrylamide gel (PAAG) with 7 M urea; staining was achieved by using toluidine blue (Pestov et al., 2003).

Elaboration of new electrophoretic methods for PolyP separation is continuing. For example, capillary electrophoretic separations of sodium PolyPs with chain lengths of 5 to 44 has been reported. In this work, a buffer containing pyromellitic acid, triethanolamine and hexamethonium hydroxide gives high-resolution separation of linear and cyclic PolyPs (Stover, 1997; Wang and Li, 1998).

Because of its efficiency, the electrophoretic method is now widely used in studies of PolyPs. It should be noted that for electrophoretic evaluation, the PolyPs must be extracted from biological material, while nucleic acids, proteins and other interfering compounds must be eliminated.

2.9 Enzymatic Methods

The greatest advantage of enzymatic methods for PolyP determination is their high specificity to PolyPs. Their wide application in recent years results from the development of adequate methods of obtaining PolyP-dependent enzymes in sufficient quantities.

The first method of enzymatic PolyP assay was proposed by Clark et al. (1986). In this technique, PolyPs were determined by polyphosphate glucokinase obtained from Propionibacterium shermanii. Glucose-6-phosphate dehydrogenase reduced NADP through utilization of the formed glucose-6-phosphate, and the increase in NADPH concentration was measured.

At the present time, many methods using PolyP-dependent enzymes for the assay of their substrates have now been developed. Polyphosphate kinase (PPK) catalyses the reversible
transfers of the terminal γ-phosphate of ATP to PolyP (Kornberg et al., 1956). The *Escherichia coli* polyphosphate kinase gene has been cloned, sequenced (Akiyama et al., 1992) and overexpressed (Crooke et al., 1994). Thus, the recombinant PPK is available for enzymatic analysis.

Exopolyphosphatase (PPX) catalyses the hydrolysis of the PolyP terminal residues to P_i almost completely (Akiyama et al., 1993). Bacterial PPX does have preference for longer PolyPs, while the major *Saccharomyces cerevisiae* exopolyphosphatase PPX1 can act on PolyP chains of 3 to 1000 residues. Cloning the gene for PPX1 (Wurst et al., 1995) and overproducing it in *E. coli* enabled the use of this enzyme as a powerful analytical reagent. It is ~ 100-fold more active as the specific exopolyphosphatase of *E. coli*. In *S. cerevisiae*, another highly active exopolyphosphatase was found, which had preference for longer PolyPs, similar to the bacterial form (Andreeva et al., 2001). Therefore, several enzymes may be used for the development of enzymatic analysis of PolyPs with different chain lengths.

Two enzyme-based methods for the estimation of PolyPs in biological samples have been described (Ault-Riché and Kornberg, 1999). The first of these (Rao et al., 1998) requires prior labelling of the culture with 32P. PolyPs are extracted from the cells by treatment with a solution containing formic acid, urea, sodium dodecyl sulfate (SDS), EDTA and carrier PolyP$_{65}$. The suspension is sonicated, and the PolyPs are bound to DE81 ion-exchange filter discs. The latter are washed, and the PolyPs are eluted with KCl. ATP and other phosphorus-containing organic compounds are removed from the eluate by using Norit charcoal. The PolyPs are concentrated by re-adsorption onto DE81 discs. After washing, the discs are treated with the purified recombinant yeast spPPX1. Decrease in the 32P content on the filters or an increase in the 32P content released from the filter corresponds to the amount of PolyP. Limitations of the radioactive method are the requirement for prior culture labelling and the inconsistent extraction of PolyPs.

There is an example of using the recombinant yeast spPPX1 for PolyP analysis without the need for prior labelling of the culture (Ruiz et al., 2001a). Aliquots of PolyP extracts (~ 1.5 nmol) were incubated for 15 min at 37°C with 60 mM Tris-HCl (pH 7.5), 6 mM MgCl$_2$ and 3000–5000 units of purified spPPX1 in a final volume of 0.075 ml. One unit corresponded to the release of 1 pmol of P_i per min at 37°C. The release of P_i was monitored by various well-known chemical methods.

The second modern enzymatic method of PolyP assay (Ault-Riché et al., 1998; Ault-Riché and Kornberg, 1999) involves the rapid isolation of PolyP by using powdered glass or glass filters, followed by its conversion to ATP under the action of PPK and an estimation of the generated ATP using a luciferin–luciferase system. The cells were lysed with 4 M guanidinium isothiocyanate, and PolyP was adsorbed onto glass or a glass filter. SDS was added during the binding step to prevent protein binding. PolyP was eluted by hot water for a buffer with low ionic strength. Then, the PolyP was converted to ATP by purified polyphosphate kinase in the presence of a 10-fold excess of ADP. The ATP generated was measured by a luminometer.

Therefore, the availability of purified enzymes specific to PolyPs allowed the development of rapid, sensitive and definitive assays. It should be noted, however, that PolyPs in biological samples may not be effectively hydrolysed by exopolyphosphatase or be available for polyphosphate kinase (Sethuraman et al., 2001).
Thus, many effective methods for PolyP determination and characterization have now been developed. These allow PolyP assays not only in extracts, but also in cell homogenates or even in living cells. The most appropriate information about the PolyP content, polymerization degree and metabolism may be obtained by combining different methods, including the extraction of PolyPs from cells.
3

THE OCCURRENCE OF POLYPHOSPHATES IN LIVING ORGANISMS

The first report on the presence of condensed inorganic phosphates in living organisms dates back to 1888, when Liebermann (Liebermann, 1888) found them in yeast ‘nuclein’. Soon after that, Kossel (Kossel, 1893) and Ascoli (Ascoli, 1899) showed that condensed phosphates formed a part of ‘plasminic acids’, obtained by the partial hydrolysis of yeast nucleic acids. Recent data have shown that PolyPs are widespread in various organisms and can be found in the cells of procaryotes and eucaryotes, especially fungi, plants and animals. Table 3.1 lists some organisms in which condensed phosphates have been identified. Only reviews are cited in this table concerning Escherichia coli and Saccharomyces cerevisiae, the microorganisms where PolyP metabolism has been most extensively studied. It should be noted, however, that new bacteria species from activated sludge accumulating PolyPs are very numerous and only some of them are presented in the table (see Chapter 9).

In addition, it should be mentioned that only certain methods for the detection of PolyPs may provide good evidence of their occurrence in the organisms under study. These are the chemical methods of extraction, along with the subsequent identification of cyclotriphosphate among the products of partial hydrolysis by chromatography, enzymatic methods, electrophoretic techniques and 31P NMR spectroscopy, which were described earlier in Chapter 2. The data obtained by cytochemical methods must now be regarded as being only preliminary.

On the other hand, it is also necessary to treat with caution any conclusions about the absence of PolyPs in any particular organism. Their content depends significantly on the development stage, growth conditions, tissues or cell compartments being analysed. Reports on the absence of PolyPs in various organisms, e.g. Streptococcus faecalis (Harold, 1966), several algae (Langen, 1958), some insects (Wiame and Lefebvre, 1946), many Actinomycetes (Kokurina et al., 1961), lichens and crayfish (Kulaev, 1979), and cells and tissues...
Table 3.1 The occurrence of polyphosphates in living organisms.

<table>
<thead>
<tr>
<th>Species</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Procaryotes</td>
<td></td>
</tr>
<tr>
<td>Archae</td>
<td></td>
</tr>
<tr>
<td>Halobacterium salinarium</td>
<td>Andreeva et al., 2000; Smirnov et al., 2002a,b</td>
</tr>
<tr>
<td>Methanosarcina frisia</td>
<td>Rudnick et al., 1990</td>
</tr>
<tr>
<td>Sulfolobus acidocaldarius</td>
<td>Skorko, 1989</td>
</tr>
<tr>
<td>Sulfolobus solfataricus</td>
<td>Cardona et al., 2002</td>
</tr>
<tr>
<td>Cyanobacteria</td>
<td></td>
</tr>
<tr>
<td>Anabaena variabilis</td>
<td>Carr and Sandhu, 1966; Correl, 1965; Correl and Tolbert, 1962, 1964; Drews and Niklowitz, 1957; Kostlan, 1972</td>
</tr>
<tr>
<td>Anacystis nidulans</td>
<td>Niemeyer and Richter, 1969; Keyhani et al., 1996</td>
</tr>
<tr>
<td>Cloclothece sp.</td>
<td>Fuhs, 1958</td>
</tr>
<tr>
<td>Cylindrospermum lichiniforme</td>
<td>Drews and Niklowitz, 1957</td>
</tr>
<tr>
<td>Lingbyaergineo amplivaginata</td>
<td>Bringmann, 1950</td>
</tr>
<tr>
<td>Lingbyaergineo coerula</td>
<td></td>
</tr>
<tr>
<td>Nostoc puriforme</td>
<td></td>
</tr>
<tr>
<td>* Oscillatoria amoena*</td>
<td></td>
</tr>
<tr>
<td>Oscillatoria limosa</td>
<td></td>
</tr>
<tr>
<td>Oscillatoria sp.</td>
<td></td>
</tr>
<tr>
<td>Phormidium ambiguum</td>
<td></td>
</tr>
<tr>
<td>Phormidium frigidum</td>
<td></td>
</tr>
<tr>
<td>Phormidium uncinatum</td>
<td></td>
</tr>
<tr>
<td>Plectonema boryanum</td>
<td></td>
</tr>
<tr>
<td>Eubacteria</td>
<td></td>
</tr>
<tr>
<td>Acetobacter suboxydans</td>
<td>Klungsöy et al., 1957</td>
</tr>
<tr>
<td>Acinetobacter sp.</td>
<td>Deinem et al., 1985; Bonting et al., 1991, 1993a,b; Kortste et al., 2000</td>
</tr>
<tr>
<td>Actinomyces (Streptomyces) aureofaciens</td>
<td>Guberniev et al., 1959; Prokof’eva-Bel’govskaya and Kats, 1960; Guberniev and Torbochkina, 1961; Belousova and Popova, 1961; Kokurina et al., 1961; Kulaev et al., 1976</td>
</tr>
<tr>
<td>Actinomyces (Streptomyces) eritreus</td>
<td>Guberniev et al., 1961</td>
</tr>
<tr>
<td>Actinomyces (Streptomyces) griseus</td>
<td>Ebel et al., 1958a,b; Hagedorn, 1959</td>
</tr>
<tr>
<td>Aerobacter (Klebsiella) aerogenes</td>
<td>Smith et al., 1954; Widra, 1959; Harold, 1963a,b, 1964, 1966; Ohtake et al., 1999; Kato et al., 1993b</td>
</tr>
<tr>
<td>Aerobacter cloacae</td>
<td>Smith et al., 1954</td>
</tr>
<tr>
<td>Agrobacterium radiobacter</td>
<td>Tardieux-Roche, 1964</td>
</tr>
<tr>
<td>Azotobacter agile</td>
<td>Zaitseva and Belozersky, 1958; Zaitseva and Tszyun-in, 1961</td>
</tr>
</tbody>
</table>
Table 3.1 (Continued)

<table>
<thead>
<tr>
<th>Species</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Azotobacter vinelandii</td>
<td>Esposito and Wilson, 1956; Zaitseva and Belozersky, 1960; Zaitseva et al., 1959, 1960a,b, 1961; Zaitseva and Frolova, 1961</td>
</tr>
<tr>
<td>Bacillus brevis</td>
<td>Hughes and Muhammed, 1962</td>
</tr>
<tr>
<td>Bacillus cereus</td>
<td>Tardieux-Roche, 1964</td>
</tr>
<tr>
<td>Bacillus freidenreihii</td>
<td>Smith et al., 1954</td>
</tr>
<tr>
<td>Bacillus megaterium</td>
<td>Hughes and Muhammed, 1962</td>
</tr>
<tr>
<td>Bacillus prodigiosus</td>
<td>Hughes and Muhammed, 1962</td>
</tr>
<tr>
<td>Brevibacterium ammoniagenes</td>
<td>Kozel’tsev et al., 1969</td>
</tr>
<tr>
<td>Burkholderia cepacia</td>
<td>Mullan et al., 2002</td>
</tr>
<tr>
<td>Caulobacter vibrioides</td>
<td>Grula and Hartsell, 1954</td>
</tr>
<tr>
<td>Chlorobium thiosulfatophilum</td>
<td>Cole and Hughes, 1965; Fedorov, 1959; Hughes et al., 1963</td>
</tr>
<tr>
<td>Chromatium okenii</td>
<td>Schlegel, 1962</td>
</tr>
<tr>
<td>Chromatium sp.</td>
<td>Fedorov, 1959</td>
</tr>
<tr>
<td>Clostridium sp.</td>
<td>Szulmajster and Gardiner, 1960</td>
</tr>
<tr>
<td>Clostridium sporogenes</td>
<td>Hughes and Muhammed, 1962</td>
</tr>
<tr>
<td>Corynebacterium xerosis</td>
<td>Dirheimer, 1964; Dirheimer and Ebel, 1964b; Hughes and Muhammed, 1962; Muhammed et al., 1959; Widra, 1959</td>
</tr>
<tr>
<td>Helicobacter pylori</td>
<td>Bode et al., 1993</td>
</tr>
<tr>
<td>Hydrogenomonas sp.</td>
<td>Kaltwasser and Schlegel, 1959; Kaltwasser, 1962; Schlegel, 1951; Schlegel and Kaltwasser, 1961</td>
</tr>
<tr>
<td>Lactobacillus casei</td>
<td>Hughes and Muhammed, 1962</td>
</tr>
<tr>
<td>Micrococcus denitrificans</td>
<td>Kaltwasser et al., 1962</td>
</tr>
<tr>
<td>Micrococcus flavus</td>
<td>Kawai et al., 2000</td>
</tr>
<tr>
<td>Micrococcus lypseodeikticus</td>
<td>Friedberg and Avigad, 1968</td>
</tr>
<tr>
<td>Microlutatus phosphovorus</td>
<td>Nakamura et al., 1995</td>
</tr>
<tr>
<td>Microtix parvicella</td>
<td>Erhart et al., 1997</td>
</tr>
<tr>
<td>Mycobacterium avium</td>
<td>Ruska et al., 1951/1952</td>
</tr>
<tr>
<td>Mycobacterium cheloni</td>
<td>Mudd et al., 1958</td>
</tr>
<tr>
<td>Mycobacterium phlei</td>
<td>Drews, 1958a,b, 1959a,b, 1960a,b; Glauert and Briege, 1955; Hughes and Muhammed, 1962; Knappe et al., 1959; Winder and Denny, 1954, 1957</td>
</tr>
<tr>
<td>Mycobacterium smegmatis</td>
<td>Hughes and Muhammed, 1962; Winder and Denny, 1955, 1957; Winder and Roche, 1967</td>
</tr>
<tr>
<td>Mycobacterium thammnepheos</td>
<td>Mudd et al., 1958</td>
</tr>
</tbody>
</table>

(continued)
Table 3.1 (Continued)

<table>
<thead>
<tr>
<th>Species</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mycobacterium tuberculosis</td>
<td>Hughes and Muhammed, 1962; Kölbel, 1958; Krüger-Thiemer and Lembke, 1954; Meissner, 1957; Meissner and Diller, 1953; Meissner and Kropp, 1953; Winder and Denneney, 1957</td>
</tr>
<tr>
<td>Myxococcus coralloides</td>
<td>Gonzales et al., 1990</td>
</tr>
<tr>
<td>Myxococcus xanthus</td>
<td>Voelz et al., 1966</td>
</tr>
<tr>
<td>Neisseria meningitidis</td>
<td>Tinsley et al., 1993</td>
</tr>
<tr>
<td>Nitrobacter sp.</td>
<td>Butt and Lees, 1960</td>
</tr>
<tr>
<td>Nitrobacter winogradsky</td>
<td>Ullrich and Bock, 1972; Van Gool et al., 1971</td>
</tr>
<tr>
<td>Nitrosomonas europaea</td>
<td>Terry and Hooper, 1970</td>
</tr>
<tr>
<td>Propionibacterium shermanii</td>
<td>Konovalova and Vorob’eva, 1972; Kulaev et al., 1973a; Clark et al., 1986</td>
</tr>
<tr>
<td>Rhodopseudomonas palustris</td>
<td>Fedorov, 1959, 1961</td>
</tr>
<tr>
<td>Rhodopseudomonas spheroides</td>
<td>Carr and Sandhu, 1966; Weber, 1965</td>
</tr>
<tr>
<td>Serratia marcescens</td>
<td>Smith et al., 1954</td>
</tr>
<tr>
<td>Spirillum volutans</td>
<td>Belozersky, 1941, 1945</td>
</tr>
<tr>
<td>Staphylococcus albus</td>
<td>Hughes and Muhammed, 1962</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>Kulyash, 1972</td>
</tr>
<tr>
<td>Streptococcus sii-1</td>
<td>Tanzer and Krichevsky, 1970</td>
</tr>
<tr>
<td>Streptomyces lividans</td>
<td>Chouayekh and Virolle, 2002</td>
</tr>
<tr>
<td>Tetrasphera australiensis</td>
<td>Maszenan et al., 2000</td>
</tr>
<tr>
<td>Tetrasphera elongata</td>
<td>Hanada et al., 2002</td>
</tr>
<tr>
<td>Tetrasphera japonica</td>
<td>Maszenan et al., 2000</td>
</tr>
</tbody>
</table>

Eucaryotes

Algae

Acetabularia crenulata | Kulaev *et al.*, 1975; Niemeyer and Richter, 1972 |

Ceratium sp. | Langen, 1958; Lohmann, 1958 |
Chara sp. | Keck and Stich, 1957 |
Chilomonas sp. | Ebel *et al.*, 1958b |
Chlamydomonas reinhardtii | Ruiz *et al.*, 2001b |
Chlamydomonas sp. | Keck and Stich, 1957 |
Table 3.1 (Continued)

<table>
<thead>
<tr>
<th>Species</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorella pyrenoidosa</td>
<td>Baker and Schmidt, 1963, 1964a,b; Curnutt and Schmidt, 1964a,b; Hermann and Schmidt, 1965; Kandler, 1957; Okutsov and Grebennikov, 1977; Schmidt, 1966; Sommer and Booth, 1938; Wintemans, 1954, 1955; Wintemans and Tija, 1952</td>
</tr>
<tr>
<td>Chlorella sp.</td>
<td>Correll, 1965; Ebel et al., 1958; Holzer, 1951; Khomlyak and Grodzinskii, 1972; Wassink, 1957; Wassink et al., 1951</td>
</tr>
<tr>
<td>Chlorella vulgaris</td>
<td>Kuhl, 1960</td>
</tr>
<tr>
<td>Cladophora sp.</td>
<td>Langen, 1958</td>
</tr>
<tr>
<td>Cosmarium sp.</td>
<td>Keck and Stich, 1957</td>
</tr>
<tr>
<td>Dunaliella viridis</td>
<td>Vagabov and Serenkov, 1963</td>
</tr>
<tr>
<td>Dunaliella salina</td>
<td>Pick and Weiss, 1991</td>
</tr>
<tr>
<td>Enteromorpha sp.</td>
<td>Langen, 1958; Lohmann, 1958</td>
</tr>
<tr>
<td>Euglena gracilis</td>
<td>Albaum et al., 1950; Lohmann, 1958; Smillie and Krotkov, 1960</td>
</tr>
<tr>
<td>Fragillaria sp.</td>
<td>Keck and Stich, 1957</td>
</tr>
<tr>
<td>Mongeotia sp.</td>
<td>Keck and Stich, 1957</td>
</tr>
<tr>
<td>Navicula sp.</td>
<td>Keck and Stich, 1957</td>
</tr>
<tr>
<td>Oedogonium sp.</td>
<td>Keck and Stich, 1957</td>
</tr>
<tr>
<td>Phaeodactylum tricornutum</td>
<td>Leitao et al., 1995</td>
</tr>
<tr>
<td>Polytomela ceca</td>
<td>Wiame and Lefebvre, 1946</td>
</tr>
<tr>
<td>Rhodopogon cystis gleibera</td>
<td>Täumer, 1959</td>
</tr>
<tr>
<td>Scenedesmus obliquus</td>
<td>Pakhomova et al., 1966; Kulaev and Vagabov, 1967; Vagabov and Serenkov, 1963</td>
</tr>
<tr>
<td>Scenedesmus quadricauda</td>
<td>Baslavskaya and Bystrova, 1964; Overbeck, 1961, 1962</td>
</tr>
<tr>
<td>Scenedesmus sp.</td>
<td>Goodman et al., 1955; Sundberg and Nilshammer-Holmvall, 1975</td>
</tr>
<tr>
<td>Spirogira sp.</td>
<td>Keck and Stich, 1957</td>
</tr>
<tr>
<td>Ulotrix sp.</td>
<td>Keck and Stich, 1957</td>
</tr>
<tr>
<td>Vaucheria sp.</td>
<td>Keck and Stich, 1957</td>
</tr>
<tr>
<td>Zygmena sp.</td>
<td>Keck and Stich, 1957</td>
</tr>
<tr>
<td>Fungi (including yeast)</td>
<td></td>
</tr>
<tr>
<td>Agaricus bisporus</td>
<td>Kritsky and Kulaev, 1963; Kritsky et al., 1965a,b; Kulaev et al., 1960a,b</td>
</tr>
<tr>
<td>Aspergillus nidulans</td>
<td>Shepherd, 1957</td>
</tr>
</tbody>
</table>
Table 3.1 (Continued)

<table>
<thead>
<tr>
<th>Species</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspergillus niger</td>
<td>Bajaj et al., 1954; Bajaj and Krishnan, 1953; Belozersky, 1958, 1959a,b; Belozersky and Kulaev, 1957; Ebel et al., 1958b; Ingelman, 1947, 1948; Ingelman and Malmgren, 1950; Kulaev, 1956, 1971; Kulaev and Belozersky, 1957, 1958, 1962a,b; Lindeberg and Malmgren, 1952; Mann, 1944a,b; Nishi, 1961; Krishnan and Bajaj, 1953a,b; Krishnan et al., 1957; Neuberg and Fischer, 1938; Mikhailovskaya, 1951</td>
</tr>
<tr>
<td>Aspergillus oryzae</td>
<td>Jordanov et al., 1962</td>
</tr>
<tr>
<td>Badihamia utricularis</td>
<td>Niklowitz, 1957</td>
</tr>
<tr>
<td>Botryotrichum pililiferum</td>
<td>Ebel et al., 1958b</td>
</tr>
<tr>
<td>Brethanomyces animalis</td>
<td>Ebel et al., 1958b</td>
</tr>
<tr>
<td>Candida guillermondii</td>
<td>Grigor’eva et al., 1973; Levchuk et al., 1969; Naumova et al., 1968; Shrestinskaya et al., 1970; Vorob’eva et al., 1973; Kulaev et al., 1974b</td>
</tr>
<tr>
<td>Candida humicola G-1</td>
<td>McGrath and Quinn, 2000</td>
</tr>
<tr>
<td>Candida tropicalis</td>
<td>Ebel et al., 1958b</td>
</tr>
<tr>
<td>Candida utilis</td>
<td>Bourne, 1990; Nunez and Callieri, 1989</td>
</tr>
<tr>
<td>Candida vulgaris</td>
<td>Ebel et al., 1958b</td>
</tr>
<tr>
<td>Chaetonium globosum</td>
<td>Ebel et al., 1958b</td>
</tr>
<tr>
<td>Choenephora cucurbitarum</td>
<td>Dietrich, 1976</td>
</tr>
<tr>
<td>Claviceps paspali</td>
<td>Kulaev and Uryson, 1965</td>
</tr>
<tr>
<td>Claviceps purpurea</td>
<td>De Waart, 1961; De Waart and Taber, 1960</td>
</tr>
<tr>
<td>Clomadadium roseum</td>
<td>Ebel et al., 1958b; Muller and Ebel, 1958a,b</td>
</tr>
<tr>
<td>Colleotruchum</td>
<td>Dietrich, 1976; Rodrigues, 1993</td>
</tr>
<tr>
<td>lindenmuthianum</td>
<td></td>
</tr>
<tr>
<td>Cryptococcus laurentii</td>
<td>Dietrich, 1976</td>
</tr>
<tr>
<td>Culvularia maculans</td>
<td>Dietrich, 1976</td>
</tr>
<tr>
<td>Cunigamella elegans</td>
<td>Dietrich, 1976</td>
</tr>
<tr>
<td>Diplodia natalensis</td>
<td>Ebel et al., 1958b</td>
</tr>
<tr>
<td>Endomyces magnusii</td>
<td>Afanas’eva and Kulaev, 1973; Afanas’eva et al., 1968; Kulaev, 1956; Kulaev and Afanas’eva, 1969, 1970; Kulaev et al., 1967a,b, 1970c; Skryabin et al., 1973</td>
</tr>
<tr>
<td>Fusarium coccineum</td>
<td>Navashin et al., 1983</td>
</tr>
<tr>
<td>Fusarium coeruleum</td>
<td>Ebel et al., 1958; Muller and Ebel, 1958</td>
</tr>
<tr>
<td>Giromitra esculenta</td>
<td>Kulaev et al., 1960</td>
</tr>
<tr>
<td>Isaria gelina</td>
<td>Ebel et al., 1958b</td>
</tr>
<tr>
<td>Kloeckera mulleri</td>
<td>Ebel et al., 1958b</td>
</tr>
<tr>
<td>Lethinus tigrinus</td>
<td>Kritsky and Belozerskaya, 1968</td>
</tr>
<tr>
<td>Morchella hortensis</td>
<td>Ebel et al., 1958b</td>
</tr>
<tr>
<td>Mortierella alpina</td>
<td>Dietrich, 1976</td>
</tr>
<tr>
<td>Mucor javanicum</td>
<td>Dietrich, 1976</td>
</tr>
<tr>
<td>Mucor mucedo</td>
<td>Dietrich, 1976</td>
</tr>
<tr>
<td>Mucor racemosus</td>
<td>James and Casida, 1964</td>
</tr>
<tr>
<td>Species</td>
<td>Reference</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Mycelia steria</td>
<td>Ebel et al., 1958b</td>
</tr>
<tr>
<td>Mycothecium verrucaria</td>
<td>Ebel et al., 1958b; Muller and Ebel, 1958</td>
</tr>
<tr>
<td>Mycotorula eisenorosa</td>
<td>Ebel et al., 1958b</td>
</tr>
<tr>
<td>Nectria rubi</td>
<td>Ebel et al., 1958b</td>
</tr>
<tr>
<td>Phycomyces balkesleanus</td>
<td>Lohmann and Langen, 1956; Petras, 1958</td>
</tr>
<tr>
<td>Physarum sp.</td>
<td>Keck and Stich, 1957</td>
</tr>
<tr>
<td>Pisolithus tinctorius</td>
<td>Ashford et al., 1999</td>
</tr>
<tr>
<td>Rhodotorula rubra</td>
<td>Ebel et al., 1958b</td>
</tr>
<tr>
<td>Saccharomyces carlsbergensis</td>
<td>Kulaev and Vagabov, 1983</td>
</tr>
<tr>
<td>Saccharomyces cerevisiae</td>
<td>Kulaev and Vagabov, 1983; Kornberg, 1995, 1999; Kulaev et al., 1999</td>
</tr>
<tr>
<td>Saccharomyces fragilis</td>
<td>Tijssen et al., 1982</td>
</tr>
<tr>
<td>Saccharomyces mells</td>
<td>Weimberg, 1970; Weimberg and Orton, 1964, 1965</td>
</tr>
<tr>
<td>Schizosaccharomyces pombe</td>
<td>Kulaev et al., 1973</td>
</tr>
<tr>
<td>Staphylotrichum coccoporum</td>
<td>Ebel et al., 1958b</td>
</tr>
<tr>
<td>Torula sp.</td>
<td>Ebel, 1951, 1952</td>
</tr>
<tr>
<td>Torula spora roxi</td>
<td>Ebel et al., 1958</td>
</tr>
<tr>
<td>Torula utilis</td>
<td>Chayen et al., 1955; Rautanen and Mikkulainen, 1951</td>
</tr>
<tr>
<td>Vertiollium honigii</td>
<td>Ebel et al., 1958</td>
</tr>
<tr>
<td>Zygorhyncus exponens</td>
<td>Dietrich, 1976</td>
</tr>
</tbody>
</table>

Mosses

Leptobrium, Polytrichum | Keck and Stich, 1957 |

Protozoa

Amoeba chaos chaos | Mattenheimer, 1958 |
Amoeba sp. | Ebel *et al.*, 1958 |

(continued)
Table 3.1 (Continued)

<table>
<thead>
<tr>
<th>Species</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crithidia fasciculata</td>
<td>Janakidevi et al., 1965</td>
</tr>
<tr>
<td>Entamoeba sp.</td>
<td>Lopez-Peville and Gomez-Domingues, 1985</td>
</tr>
<tr>
<td>Leishmania major</td>
<td>Rodrigues et al., 2002a; Moreno et al., 2000</td>
</tr>
<tr>
<td>Tetrahymena pyriformis</td>
<td>Rosenberg, 1966</td>
</tr>
<tr>
<td>Trypanosoma brucei</td>
<td>Moreno et al., 2000</td>
</tr>
<tr>
<td>Trypanosoma cruzi</td>
<td>Ruiz et al., 2001a</td>
</tr>
</tbody>
</table>

Flowering plants

<table>
<thead>
<tr>
<th>Species</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cotton, seeds</td>
<td>Asamov and Valikhanov, 1972; Valikhanov et al., 1980</td>
</tr>
<tr>
<td>Cuscuta reflexa</td>
<td>Tewari and Singh, 1964</td>
</tr>
<tr>
<td>Deschampsia flexiosa</td>
<td>Nassery, 1969</td>
</tr>
<tr>
<td>Banksia ornata, roots and stems</td>
<td>Jeffrey, 1964</td>
</tr>
<tr>
<td>Lemna minor</td>
<td>Inhäusern and Niemeyer, 1975; Niemeyer, 1975</td>
</tr>
<tr>
<td>Maize, roots</td>
<td>Vagabov and Kulaev, 1964</td>
</tr>
<tr>
<td>Malus domestica (apple), leaves</td>
<td>Schmidt, 1971, 1972; Schmidt and Buban, 1971</td>
</tr>
<tr>
<td>Solanum lycopersicum</td>
<td>Khomlyak and Grodzinskii, 1970, 1972; Klein, 1952</td>
</tr>
<tr>
<td>(tomato), leaves, hypocotils</td>
<td></td>
</tr>
<tr>
<td>Spinacea oleracea (spinach), leaves</td>
<td>Miyachi, 1961</td>
</tr>
<tr>
<td>Triticum vulgare (wheat), leaves</td>
<td>Wang and Manchini, 1966</td>
</tr>
<tr>
<td>Urtica dioica</td>
<td>Nassery, 1969</td>
</tr>
</tbody>
</table>

of higher animals and plants (Ebel, 1952c; Korchagin, 1954; Lohmann, 1958) should not be regarded as evidence for their inability to synthesize and accumulate these compounds under suitable conditions of growth or in separate cell compartments.

With regard to animals, PolyPs were found in the freshwater sponge *Ephydatia muelleri* (Imsiecke *et al.*, 1996) and in some insects, namely the imago stage of *Blaberus craniifera* (Kulaev *et al.*, 1974c), larvae of *Deilephila euphorbiae* (Heller *et al.*, 1950; Heller, 1953, 1954) and *Galeria mellonella* (Niemero, 1950, 1953; Niemierko and Niemierko, 1950), excretions of *Achroca grissela* (Pierpoint, 1957c), *Celleria euphorbiae* (Heller, 1953), and *Galeria mellonella* (Niemierko, 1950, 1953, Niemierko and Niemierko, 1950; Wojtezak, 1954; Pierpoint, 1957c).

PolyPs were also observed in embryos of frog *Rana japonica* (Shiokawa and Yamana, 1965) and different tissues of mammals (Grossman and Lang, 1962; Penniall and Griffin, 1964; Griffin *et al.*, 1965; Gabel, 1971; Gabel and Thomas, 1971; Mansurova *et al.*, 1975a; Kumble and Kornberg, 1995; Lorenz *et al.*, 1997b; Leyhausen *et al.*, 1998; Kornberg, 1999; Schröder *et al.*, 1999, 2000). Thus, it can be seen that PolyPs are very widespread in living organisms at different stages of evolution.
THE FORMS IN WHICH POLYPHOSPHATES ARE PRESENT IN CELLS

As mentioned in Chapter 2, PolyPs may be present in living cells both in the free and bound states. Modern methods, including 31P NMR spectroscopy, give some evidence for this concept. Since the classical work of MacFarlane (1936), it has been considered that acid-soluble low-molecular-mass PolyPs are present in cells in the free state. However, the question as to the state of the more polymeric PolyPs within a cell cannot yet be considered as having been finally resolved.

4.1 Polyphosphate–Cation Complexes

Being polyanions, PolyPs can form complexes with different cations including biologically important Ca^{2+} and Mg^{2+} (Van Wazer and Campanella, 1950; Van Wazer, 1958; Corbridge, 1980; Bonting et al., 1993a; Cini et al., 2000). The dissociation constants for Mg^{2+}– and Ca^{2+}–polyphosphate complexes were 9.3×10^{-2} M and 1.5×10^{-2} M, respectively (Bonting et al., 1993a).

Using electron microscopy and energy disperse X-ray microanalysis, it was shown that PolyP granules of cyanobacteria contain Mg^{2+}, Ca^{2+}, Mn^{2+} and other cations (Baxter and Jensen, 1980a,b; Jensen et al., 1982). Large PolyP granules of *Acinetobacter* contain Mg^{2+}, Ca^{2+} and K^{+} in a ratio which depends on the extracellular concentrations of the above cations (Bonting et al., 1993a). In bacteria, PolyP complexes with heavy metals were observed: with Sr^{2+} and Ba^{2+} in *Plectonema boryanum* (Baxter and Jensen, 1980a,b), with Ni^{2+} in *Staphylococcus aureus* (Gonzales and Jensen, 1998), and with Cd^{2+} in *Anacystis nidulans* (Keyhani et al., 1996) and *Escherichia coli* (Keasling and Hupf, 1996; Keasling, 1997; Keasling et al., 2000).
PolyPs can form complexes with arginine, spermidine, lysine, Mg\(^{2+}\), Ca\(^{2+}\) and Mn\(^{2+}\) in vacuoles of yeast (Wiemken and Dürr, 1974; Dürr et al., 1979; Okorokov et al., 1980; Lichko et al., 1982; Westenberg et al., 1989; Dünn et al., 1994) and Neurospora crassa (Cramer and Davis, 1984). The cells of protozoa (Docampo and Moreno, 2001; Rodrigues et al., 2002a,b) and some algae (Ruiz et al., 2001b) possess an acidic organelle, acidocalcisome, which contains pyrophosphate and PolyPs bound with Ca\(^{2+}\), Mg\(^{2+}\), Zn\(^{2+}\) and other cations. It should be noted that in these organelles, low-molecular-weight PolyPs, including PolyP\(_3\), are present in the bound state.

4.2 Polyphosphate–Ca\(^{2+}\)–Polyhydroxybutyrate Complexes

Specific complexes containing polyhydroxybutyrate (PHB) and PolyPs have been found in membranes of many organisms (Reusch and Sadoff, 1988; Reusch, 1992, 1999a, 2000). When such components of *E. coli* membranes were isolated and analysed, Ca\(^{2+}\) was found to be the predominant neutralizing cation (Reusch and Sadoff, 1988). The polymer length was 130–150 residues for PHB (~ 12 kD), as measured by non-aqueous size-exclusion chromatography (Seebach et al., 1994a), and 55–70 residues for PolyP (~ 5 kD), as determined by acrylamide gel electrophoresis (Castuma et al., 1995). The molecular weight of the complex was estimated as 17 (± 4) kD by non-aqueous size-exclusion chromatography (Reusch et al., 1995). These measurements indicate a 1:1 ratio between the two polymer strands and a 2:1 ratio of monomer residues for PHB:PolyP.

The detailed structure of PolyP–PHB complexes is still unknown. However, some assumptions were made on the basis of physical properties and sizes of the polymers, and the low dielectric environment they inhabit. It is clear that the highly polar polyanionic PolyPs must be shielded from the hydrophobic region of the bilayer by amphiphilic PHB. The models for membrane channel complexes were proposed by Reusch and co-workers (Reusch and Sadoff, 1988; Reusch et al., 1995) and by Seebach and co-workers (Seebach et al., 1994b, 1996). The first model proposes that PHB has a coiled conformation such as it displays in solution (Figure 4.1), while the second one assumes that PHB maintains the folded helix form of its solid-state structure (Figure 4.2). A consequence of both arrangements is the formation of multiple parallel ‘lanes’ between the two polymers, with multiple cation-binding sites lining each of these lanes.

In the ‘Reusch model’, the complexes have the liquid properties of polymer electrolytes and this suggests a family of conformations rather than a single defined structure. In the ‘Seebach model’, several PHB molecules surround the PolyP unit. Individual PHB chains are free to adopt various positions in the phospholipid lattice; hence, a well-defined structure is again unlikely. Further studies may help us in choosing one of these two proposed models.

4.3 Complexes of Polyphosphates with Nucleic Acids

PolyP–ribonucleic acid complexes have been isolated from a variety of organisms (Belozersky, 1955, 1958, 1959a; Chayen et al., 1955; Chaloupka and Babicky, 1957, 1958;
Complexes of polyphosphates with nucleic acids

Figure 4.1 Model of the PolyP–PHB channel structure as proposed by Reusch and co-workers (from Reusch, 1999a). The central cylinder represents the PolyP helix with binding sites for Ca$^{2+}$, with the Ca$^{2+}$–PolyP complex being surrounded by the PHB helix (Reusch and Sadoff, 1988; Das et al., 1997).

All of these investigations sought to resolve the question of whether the RNA was combined with the PolyP or if they were simply co-precipitated during extraction and separation from the cells as a result of similarities in their chemical and physico-chemical properties. Solution of this problem has been found to cause great difficulties. It was found impossible to separate these compounds completely by precipitation and re-precipitation in the presence of Ba$^{2+}$, Mg$^{2+}$, Ca$^{2+}$ and other metal ions. The use of different conditions for RNA separation (by sodium dodecyl sulfate (SDS) or phenol, or by a combination of the two) from yeast cells, which contained large amounts of PolyPs, failed to yield RNA fractions free from PolyPs. It proved especially difficult to separate PolyPs from such RNA fractions when they contained relatively small amounts of PolyPs. For example, the RNA–PolyP complex obtained from Aspergillus niger could not be separated by electrophoresis in a Tiselius apparatus (Kulaev and Belozersky, 1958). The same conclusion was drawn when paper chromatography was used in an attempt to separate the PolyP–RNA complex from yeast, in which RNA predominated (Chayen et al., 1955). When fractions
containing large amounts of PolyP were examined, however, it was found possible to separate the latter from the RNA either by electrophoresis (Chayen et al., 1955; Ebel et al., 1962; Dirheimer et al., 1963) or by paper chromatography (Ebel et al., 1962; Dirheimer and Ebel, 1964a). In particular, electrophoretic examination in a Tiselius–Swensson apparatus of three PolyP–RNA complexes was undertaken (Belozersky and Kulaev, 1970). This series of experiments was carried out with the PolyP–RNA complex from brewer’s yeast (PolyP/RNA ratio of 1:7), after preliminary purification by electrophoresis on a cellulose column, and with two fractions obtained from baker’s yeast without any preliminary purification (PolyP/RNA ratios of 1:4 and 1:9).

Parallel experiments were carried out using artificial mixtures of PolyP and RNA with various ratios of the components. Electrophoresis was performed in acetate buffer: pH 4.5–4.7, ionic strength 0.04, temperature 2 °C, current 9 mA, and potential gradient 6–7 V cm⁻¹. In all of the experiments, the mean electrophoretic mobilities of the PolyP and RNA were calculated, together with the approximate ratios of PolyP to RNA, from the areas under the peaks on the electrophoregrams. The electrophoresis of the PolyP–RNA complexes, preliminarily purified by electrophoresis on a cellulose column, gave only a single symmetrical peak. This would appear to indicate the presence in this fraction of a homogenous PolyP–RNA complex, but this particular experiment had the disadvantages that the fraction was present in a very low concentration and only a small amount of PolyP was present therein.
Comparison of the peak areas on the electrophoregrams showed, however, that the PolyP component was much smaller than it should have been had it contained all of the PolyP present in the complex. Thus, in the less PolyP-rich fraction, instead of a PolyP/RNA ratio of 1:4, the electrophoregram showed a ratio of 1:11, and electrophoregram examination of a fraction with a PolyP/RNA ratio of 9:1 gave peaks in the ratio of 4:1. This suggested that some part of the PolyP present in these fractions was combined with the RNA, while the other part was in the free state.

In order to establish whether the PolyP was bound to the RNA, even if only partially, by divalent metal cations, the PolyP–RNA fractions were dialysed before electrophoresis against a 10^{-3} M solution of the known complexing agent EDTA. This treatment resulted in a certain increase in the PolyP peaks, although it did not lead to complete separation of all PolyP from the RNA. These results suggested that divalent metal cations played some role in the formation of PolyP–RNA complexes. In order to confirm this assumption, a series of experiments on separation by electrophoresis of artificial mixtures of PolyP and RNA was carried out. In these studies, PolyP from a yeast acid-soluble fraction with an average chain length of 30 residues and synthetic sodium PolyP with an average chain length of 75 residues were used. The pure RNA material (Merck) was the same in both cases. Examination of the results showed that the mixtures, which contained yeast PolyP (with Ca$^{2+}$), displayed marked discrepancies in the PolyP to RNA ratios before and after separation in a Tiselius apparatus. The area under the early displayed peak was substantially smaller than it should have been with regard to the initial PolyP content in the material. On the other hand, the PolyP/RNA ratio remained nearly the same when the mixture of RNA with synthetic PolyP was analysed. These results demonstrated the absence of covalent bonds in the complexes isolated from biological material. It is very likely that PolyP and RNA are bound by divalent metal cations.

It should be noted that in the work of Ebel and co-workers (Ebel et al., 1958c; 1962, 1963; Dirheimer and Ebel, 1964a; Dirheimer et al., 1963) techniques for the preparative separation of PolyP–RNA complexes from yeast by using activated carbon (Ebel et al., 1962; Muller-Felter and Ebel, 1962; Stahl and Ebel, 1963; Stahl et al., 1964) and Sephadex G-200 (Dirheimer and Ebel, 1964a) were developed. In addition, these complexes can be separated into their components by precipitation of the PolyP in the presence of high concentration of barium salts (Belozersky and Kulaev, 1970).

Belozersky and Kulaev (1970) and Stahl and Ebel (1963) showed that Ca$^{2+}$ and Mg$^{2+}$ ions were responsible for the formation of very stable and ‘difficult-to-separate’ PolyP/RNA complexes. Investigations into the possible existence of covalent or hydrogen bonds in these complexes have shown that both forms of bonding are absent, while electrostatic interactions mediated by Ca$^{2+}$, Mg$^{2+}$ and other metal ions are possibly present (Ebel et al., 1962; Belozersky and Kulaev, 1964, 1970). It should be noted that there might be a certain similarity between RNA–PolyP and PHB–PolyP, in particular, participation of divalent cations in the linkage of the two polymers. The model of the linkage of the PolyP and RNA chains through such divalent cations is presented in Figure 4.3.

The question of the functions of RNA–PolyP complexes needs further investigation. It is probable that the complexing with PolyP enhances the RNA stability. Some evidence has been obtained that in *E. coli* PolyPs inhibit RNA degradation by degradosome (Blum et al., 1997).

The possibility of PolyP interaction with DNA is now confirmed by data evidencing its participation in gene activity control (Kornberg, 1999; Kornberg et al., 1999). Earlier,
PolyP$_{60}$ was found in DNA preparations from filamentous fungal species of *Colletotrichum* (Rodriguez, 1993).

4.4 Binding of Polyphosphates with Proteins

Many years ago, Liss and Langen (1960a,b) showed that the most highly polymerized yeast PolyP fraction, extractable only with strong alkali (0.05 M) or when kept for a long period with diluted CaCl$_2$ solution, is apparently firmly bound to some cell components other than RNA. The removal of RNA by RNAase had no effect on the extraction rate of this PolyP fraction. It was considered that in this case PolyP was bound to a certain protein.

Later, numerous PolyP-binding proteins were detected in crude cell extracts from different organisms, including yeast and animals, using a filter-binding technique or affinity chromatography on PolyP–zirconia (Lorenz *et al.*, 1994a).

Some of the PolyP complexes with proteins are very important in cell regulatory processes. RNA polymerase isolated from the stationary-phase cells of *E. coli* was found to be closely bound with PolyP (Kusano and Ishihama, 1997). The ATP-dependent protease Lon formed a complex with PolyPs under degradation of ribosomal proteins at amino acids starvation (Kuroda *et al.*, 2001). PolyP is able to compete with DNA for the DNA binding sites at histones (Schröder *et al.*, 1999), while PolyPs can interact with non-histone proteins in the nucleus (Offenbacher and Kline, 1984).

PolyPs and PHB have been found to be associated with ion-conducting proteins such as the human erythrocyte Ca$^{2+}$–ATPase pump (Reush *et al.*, 1997) and the *Streptomyces lividans* potassium channel (Reusch, 1999b). Some enzymes of PolyP metabolism, such as polyphosphate glucokinase (Phillips *et al.*, 1999) and yeast high-molecular-weight exopolypophosphatase (Andreeva *et al.*, 2001, 2004), can contain tightly bound PolyP.
It is also possible that PolyPs in cells may be combined with other compounds, including polysaccharides, such as polyhexamines and chitin. PolyPs were shown to form complexes with polysaccharides of the cell wall of *N. crassa*, *in vitro* (Harold and Miller, 1961). The complex-forming reaction depended on both pH and the PolyP chain length.

The complexing ability of PolyP is one of the major properties of this negatively charged biopolymer, determining to a considerable extent its regulatory function in living cells. In our opinion, such metabolically active molecules as PolyPs do not exist in cells in the free form in large amounts. They are strongly compartmentalized and combined in the cell, either permanently or temporarily, via chelate bridges with other compounds. As described above, PolyPs can form complexes with such biologically active cations as Ca$^{2+}$, Mg$^{2+}$, K$^+$, etc., with polyhydroxybutyrate, and, which is of great importance, with nucleic acids and proteins. Probably, the interactions of PolyPs with other biopolymers are mediated in some cases by Ca$^{2+}$. However, this has only been established with certainty for PolyP–polyhydroxybutyrate–Ca$^{2+}$ complexes. The ability of PolyPs to form complexes with different components of living cells allows them to perform many specific functions in such cells.
5

LOCALIZATION OF POLYPHOSPHATES IN CELLS OF PROKARYOTES AND EUKARYOTES

5.1 Prokaryotes

Prokaryotic cells have much simpler structures when compared with the simplest eukaryotes, such as yeast, fungi or algae. They have no nucleus enveloped by a membrane and no vacuoles, which are known to possess many PolyPs in eukaryotic cells. The compartmentalization of biochemical processes is not well developed in prokaryotic cells. However, PolyPs are found in all main compartments of the bacterial cell, i.e. cytoplasm, cell surface, periplasm and plasma membrane.

The presence of PolyPs in cellular inclusions, long known as Babesh–Ernst bodies, metachromatic granules, or volutin granules, was found long ago (Belozersky, 1945; Ebel, 1952d; Ebel and Muller, 1958; Ebel et al., 1955, 1958a,b; Meissner and Diller, 1953; Drews, 1958a,b, 1959a,b, 1960a,b, 1962; Drews and Niklowitz, 1957; Guberniev et al., 1961; Widra, 1959; Wilkinson and Duguid, 1960; Prokof’eva-Bel’govskaya and Kats, 1960; Hughes and Muhammed, 1962; Kulaev and Belozersky, 1962a,b; Verbina, 1964). PolyP granules were observed in cells of many prokaryotes (see the reviews of Kuhl, 1960, 1962, 1976; Harold, 1966; Kulaev and Vagabov, 1983; Wood and Clark, 1988), including PolyP-accumulating bacteria from activated sludge (Suresh et al., 1985; Rees et al., 1992; Serafim et al., 2002).

The presence of PolyPs in these granules is indicated by the following indirect observations. First, volutin granules undergo metachromatic staining by basic dyes, 4′,6′-diamino-2-phenylindole (DAPI) fluorescence shifts, and other reactions specific for PolyPs (see...
Chapter 2), and they strongly absorb electrons, in exactly the same way as PolyPs (Drews, 1960a,b). Secondly, the accumulation of volutin granules almost always correlated well with the accumulation of specific PolyP fractions (Belousova and Popova, 1961). Bacterial mutants, which are unable to accumulate PolyPs, have no volutin granules in their cells (Harold and Harold, 1963, 1965). Thirdly, the utilization of PolyPs present in cells of certain bacteria by polyphosphate glucokinase is accompanied by the disappearance of volutin granules (Szymona and Szymona, 1961; Szymona, 1962). There is no doubt that PolyP-containing granules are actually present in cells and are not artifacts formed during the fixation and staining of cells by particular dyes. This may be concluded from the fact that they are readily visible without staining in living cells of microorganisms by phase-contrast microscopy.

It has already been pointed out that it is not only PolyPs but other anionic polymers, such as poly-\(\beta\)-hydroxybutyrate, which may form metachromatic granules in the cells of prokaryotes. However, recently a number of methods for differential staining of PolyPs and polyhydroxyalkanoate-containing granules in cells have been developed (see the review of Serafim et al., 2002).

Various cytochemical methods were elaborated to detect volutin-like granules in different microorganisms (Keck and Stich, 1957; Ebel and Muller, 1958; Ebel et al., 1958a,b; Singh, 1959; Serafim et al., 2002). Cytological methods for detecting polyphosphate granules were boosted by the use of the electron microscope (Niklowitz and Drews, 1955; Ebel et al., 1958a,b; Drews, 1960a; Voelz et al., 1966; Jensen, 1968, 1969; Friedberg and Avigad, 1968; Jensen and Sicko, 1974; Jensen et al., 1977). The most comprehensive data on volutin granules in cyanobacteria were obtained by Jensen and co-workers (Jensen, 1968, 1969; Jensen and Sicko, 1974; Sicko-Goad et al., 1975; Sicko-Goad and Jensen, 1976; Jensen et al., 1977; Lawry and Jensen, 1979; Baxter and Jensen, 1980a,b). Using electron microscopy, Jensen and his colleagues investigated the accumulation of PolyP granules under various cultivation conditions in the cyanobacteria _Nostoc pumiforme_ (Jensen, 1968), _Plectonema boryanum_ (Jensen, 1969; Jensen and Sicko, 1974; Sicko-Goad and Jensen, 1976; Baxter and Jensen, 1980a,b; Jensen et al., 1982) and _Anacystis nidulans_ (Lawry and Jensen, 1979). Under normal growth conditions, PolyP granules were found mainly near the DNA region and in a zone enriched with ribosomes. Under conditions of 'phosphate overplus', PolyP granules appeared in the polyhedral bodies involved in the dark reactions of photosynthesis in cyanobacteria (Stewart and Godd, 1975). In certain cells, PolyP granules formed close to thylakoids, which in these organisms perform phosphorylation reactions. Electron microscopy established that in cyanobacteria PolyP granules are localized in most cases in the region of nucleoid and sub-cellular structures participating in photosynthesis (Vaillancourt et al., 1978; Barlow et al., 1979). The data obtained, at least those on localization of polyphosphate granules in the vicinity of the bacterial nucleoid, correlated well with the previous findings using the same method on heterotrophic prokaryotes (Drews, 1958a, 1960a, Voelz et al., 1966; Friedberg and and Avigad, 1968; Kulaev and Vagabov, 1983).

Volutin granules were isolated from cells of _Agrobacterium tumefaciens_ (Seufferheld et al., 2003) by gradient centrifugation. The volutin granule fraction contained 20 % of the total amount of PP\(_i\) and short-chain PolyPs and more than 35 % of total amount of P\(_i\) and long-chain PolyPs. The total extract of _Agrobacterium tumefaciens_ contained \(\sim 315\) nmol (mg protein)\(^{-1}\) of PolyP with a chain length less than 50 residues, and 217 nmol (mg protein)\(^{-1}\) of PolyP of about 700–800 P\(_i\) residues. X-ray microanalysis showed that the
granules contained magnesium and potassium, but if *Agrobacterium tumefaciens* was cultivated in the presence of CaCl\(_2\), no magnesium and potassium was detected, but a dramatic increase in calcium content was revealed (Seufferheld et al., 2003). Transmission electron microscopy revealed that each granule was surrounded by a membrane (Seufferheld et al., 2003), similar to the poly-\(\beta\)-hydroxybutyric granules of some *Bacillus* (Williamson and Wilkinson, 1958). This supported the earlier data that under certain cultivation conditions, e.g. when grown on a medium containing oleic acid, the PolyP granules of mycobacteria were surrounded by lipid layers (Schaefer and Lewis, 1965).

Voelz et al. (1966) described a detailed investigation into the formation of PolyP granules in *Myxococcus xanthus* under various growth conditions. It was found that the PolyP granules in this organism are closely associated with glycogen inclusions, and are either distributed throughout the cytoplasm or localized within the nucleoids. A similar localization of PolyP granules was found in *Micrococcus lysodeikticus* (Friedberg and Avigad, 1968).

Some part of the PolyP may be located in the periplasmic region or in the cell capsule, i.e. outside the cytoplasmic membrane of bacterial cells. Ostrovsky et al. (1980), for example, believed that a marked increase in the intensity of the PolyP signals was observed when cells of *Mycobacterium smegmatis* were treated with EDTA, which points to localization of a certain amount of mobile PolyP in the periplasmic region. In the bacterial parasite *Bdellovibrio bacteriovorus*, most of the PolyP occur in the form of acid-insoluble highly polymerized fractions predominantly localized outward (Bobyk et al., 1980; Egorova et al., 1981). Similar observations were made with the oligotrophic bacteria *Tuberoidobacter* and *Renobacter* (Nikitin et al., 1979).

PolyP is a component of the cell capsule, which is loosely attached to the surface membrane of the *Neisseria* species. This capsular PolyP represents about a half of the PolyP content in *Neisseria* cells (Tinsley et al., 1993).

Bacterial membranes possess PolyPs as complexes with Ca\(^{2+}\) and poly-\(\beta\)-hydroxybutyrate (Reusch and Sadoff, 1988). The finding of these unusual structures is one of the most remarkable recent discoveries in PolyP biochemistry (see the reviews of Reusch, 1992; Reusch, 1999a; Reusch, 2000).

As a whole, it might be affirmed that PolyP is localized in prokaryotic cells in many cell compartments. For example, in the *Helicobacter pylori* bacteria colonizing gastric antrum, PolyP was found in at least three different locations: the cytoplasm, the flagellar pole and in association with the cell membrane (Bode et al., 1993). In PolyP-accumulating microorganisms of activated sludge, PolyP was observed by electron microscopy in the periplasm, cytoplasm and on the cell surface (Bond and Rees, 1999). One example of the cytochemical picture of PolyP localization in the bacterial cell is shown in Figure 5.1.

5.2 Eukaryotes

The basic difference between eukaryotes and prokaryotes is a much better developed compartmentalization of biochemical processes in eukaryotes, wherein some of the processes take place in specialized cell organelles. However, eukaryotic cells possess PolyP pools in all cell compartments studied in this respect.

The study of PolyP content in different cell compartments of eukaryotic cells is still a difficult task. Quantitative estimation of the PolyP content in the compartments of eukaryotic
microorganisms may depend on the methods of extraction and assay. At cell fractionation, labile PolyP may degrade. The results obtained by 31P NMR spectroscopy also have to be interpreted with a certain caution, considering the presence of ‘NMR-invisible’ PolyP in some compartments (see Chapter 2). The content of PolyP varies depending on the cultivation conditions. Nevertheless, using a combination of cytochemistry, chemical extraction, NMR spectroscopy and cell sub-fractionation methods, reliable data on PolyP localization in eukaryotic cells have been obtained.

Intracellular localization of PolyP in eukaryotes has been most extensively studied in yeast and fungi. Since the earliest works of Wiame (1946, 1947a,b, 1948, 1949, 1958), it has been known that PolyPs, or at least some part of them, are present in yeast cells as volutin granules. Such granules, containing about 14 % of the total PolyP content in yeast cells, four basic proteins and metal ions, were isolated by Jacobson et al. (1982). The chain length of the PolyP in isolated granules was estimated to be >3000 phosphate residues, but other methods give values of no more than 100–200 residues for the whole yeast cell (Vagabov et al., 1998; Ogawa et al., 2000a). Volutin granules were found in the cytosol and vacuoles by cytochemical method (Voříšek et al., 1982). The content of PolyP in the cytosol depends on culture age and cultivation conditions. The cytosol fraction may contain 10 % (Okorokov et al., 1980) to 70 % (Trilisenko et al., 2002) of the PolyP cell pool in cells of S. cerevisiae. In yeast, its amount in the cytosol increases about twofold under the so-called ‘phosphate overplus’, when cells are transferred from the medium without phosphate to a medium with phosphate (Trilisenko et al., 2002).

The first attempts to determine the intracellular localization of PolyPs in eukaryotes were made long ago. The earliest investigations aimed at establishing the localization of

Figure 5.1 PolyP granules in *Myxococcus xanthus* (magnification 110 000×).
the total intracellular PolyP were made by Harold and Miller (1961) on the mycelium of *Neurospora crassa*. They determined the distribution of PolyPs and some other compounds in various cell structures of this organism after disrupting of the mycelia in a Nossal’s apparatus in 0.05 M tris(hydroxymethyl)amino methane (TRIS), pH 7.0, containing 0.25 M sucrose, and separation of cell structures by differential centrifugation (Table 5.1). It should be noted that, under mechanical disruption of the cells, a rapid degradation of PolyP may occur, and there is a possibility of secondary sorption and desorption of PolyP during sub-fractionation. Harold and Miller reported the occurrence of both of these processes. For example, acid-soluble PolyP degraded to P_i in the course of this work. Furthermore, Harold (1962a) showed that the presence of a large amount of acid-insoluble PolyP in the cell wall material from *N. crassa* could be due to secondary sorption by polysaccharides, such as chitin, which form a part of the cell wall of this organism.

Much more promising were the investigations which had no recourse to mechanical disruption of the cell. Weimberg and Orton (1965) treated the cells of *Saccharomyces mellis* with an enzyme preparation from the snail *Helix pomatia*. This treatment causes lysis of the fungal polysaccharide cell wall, resulting in the formation of spheroplasts devoid of cell walls. It was shown that approximately one fourth to one third of the total cellular PolyP was removed from the cells and degraded to P_i during the spheroplasts formation (Weimberg and Orton, 1965; Weimberg, 1970). It was concluded that these PolyPs were localized in the immediate vicinity of the external cytoplasmic membrane (Weimberg and Orton, 1965).

Souzu (1967a,b) showed that yeast cells during freezing and thawing underwent disturbance of the cytoplasmic membrane, accompanied by rapid hydrolysis of cellular PolyP to P_i. This was interpreted as evidence of localization of a significant portion of PolyP in yeast in the region of the cytoplasmic membrane. The localization of a portion of PolyP in yeast cells on the cell surfaces was proposed by Van Steveninck and Booj (1964), obtaining some evidence for PolyP participation in glucose transport.

Later, PolyP was revealed outside the plasma membrane of the yeast *Kluyveromyces marxianus* by fluorescence of 4′6-diamidino-2-phenylindole (Tijssen et al., 1982), by lead staining (Voříšek et al., 1982) and X-ray microanalysis (Tijssen and Van Steveninck, 1985), by a decrease in the ^31^P NMR signal under UO_2^{2+} binding (Tijssen and Van Steveninck, 1984), by osmotic shock treatment (Tijssen et al., 1983), and by 9-aminoacrydine binding (Vagabov et al., 1990a). The cell envelope of yeast can contain about 20 % (and even more) of the total PolyP content of yeast cells (Vagabov, 1988; Ivanov et al., 1996).

Different cellular localization of various PolyP fractions on the basis of examination of their functions and metabolism was first proposed for *Chlorella* (Miyach, 1961; Miyachi and Miyachi, 1961; Miyachi and Tamiya, 1961; Kanai et al., 1963; Miyachi et al., 1964). In particular, it was shown that this alga possesses PolyP fraction A, which is a constituent of volutin granules and closely involved in nuclear metabolism, and another PolyP fraction C, which is sited adjacent to the chloroplasts and involved in photosynthetic processes. Fractions B and D appeared to be localized in other cell structures.

The investigation of intracellular localization of PolyP was carried out for the fungi *Neurospora crassa* and *Endomyces magnusii* (Kulaev et al., 1966a, 1967a,b, 1970a,b; Krasheninnikov et al., 1967, 1968; Kulaev and Afanas’eva, 1969, 1970; Skryabin et al., 1973). While mechanical disruption of cells was shown to be unsuitable for obtaining subcellular fractions, protoplast isolation was used in these studies. Although the total amount of phosphorus present in the intact cells and in the protoplasts was the same, nevertheless the
Table 5.1 Distribution of PolyPs and other compounds between fractions of sub-cellular structures in 24 h mycelia of *Neurospora crassa* enriched in phosphorus (per 1.5 g of fresh weight) (Harold and Miller, 1961).

<table>
<thead>
<tr>
<th>Fraction</th>
<th>Acid-insoluble PolyP</th>
<th>Phospholipids</th>
<th>Nucleic Acids</th>
<th>Protein</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P (µg)</td>
<td>% of initial value</td>
<td>P (µg)</td>
<td>% of initial value</td>
</tr>
<tr>
<td>Whole homogenate</td>
<td>740 100</td>
<td>480 100</td>
<td>15 500</td>
<td>100</td>
</tr>
<tr>
<td>Cell walls</td>
<td>465 63</td>
<td>190 40</td>
<td>1100</td>
<td>7</td>
</tr>
<tr>
<td>Mitochondria</td>
<td>145 20</td>
<td>275 57</td>
<td>1200</td>
<td>8</td>
</tr>
<tr>
<td>Ribosomes plus supernatant</td>
<td>68 9</td>
<td>48 10</td>
<td>11 000</td>
<td>71</td>
</tr>
<tr>
<td>Total</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>86</td>
</tr>
</tbody>
</table>

Table 5.2 Contents of PolyPs and other phosphorus compounds in the cells, protoplasts, and nuclei of *Neurospora crassa* (expressed as mg of P per g of dry mycelium) (Kulaev *et al.*, 1966a; Krasheninnikov *et al.*, 1967, 1968).

<table>
<thead>
<tr>
<th>Phosphorus compound</th>
<th>Whole cells</th>
<th>Protoplasts</th>
<th>Nuclei</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total PolyP</td>
<td>5.6</td>
<td>3.0</td>
<td>0.2</td>
</tr>
<tr>
<td>Acid-soluble PolyP(I)</td>
<td>1.8</td>
<td>1.8</td>
<td>0.0</td>
</tr>
<tr>
<td>Salt-soluble PolyP(II)</td>
<td>1.0</td>
<td>1.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Alkali-soluble PolyP(IV)</td>
<td>2.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Hot-HClO₄-extractible PolyP(V)</td>
<td>0.8</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Orthophosphate (Pᵢ)</td>
<td>1.1</td>
<td>3.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Pᵢ plus total PolyP</td>
<td>6.7</td>
<td>6.0</td>
<td>0.2</td>
</tr>
<tr>
<td>Nucleotides</td>
<td>1.2</td>
<td>1.0</td>
<td>0.1</td>
</tr>
<tr>
<td>Nucleic acids</td>
<td>6.7</td>
<td>6.9</td>
<td>0.6</td>
</tr>
<tr>
<td>Phospholipids</td>
<td>2.1</td>
<td>2.1</td>
<td>0.4</td>
</tr>
<tr>
<td>Sugar phosphates</td>
<td>0.4</td>
<td>0.5</td>
<td>0.2</td>
</tr>
<tr>
<td>Total phosphorus</td>
<td>17.3</td>
<td>17.2</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Amount of different PolyP fractions differed considerably in *N. crassa* (Table 5.2). When the protoplasts were produced, the PolyPs of alkali and hot perchloric acid extracts disappeared completely, while the acid-soluble and salt-soluble fractions remained unchanged. The disappearance of some parts of the PolyPs was accompanied by a corresponding increase in the amount of Pᵢ. This leads to the conclusion that the cell wall removal results in hydrolysis of the above-mentioned highly polymerized PolyP to Pᵢ. It is possible that these PolyP fractions are in some way bound to the cytoplasmic membrane of *N. crassa* and the formation of protoplasts stimulates their hydrolysis. It is probable that these fractions are far more sensitive to the integrity of cell structure than the acid-soluble and salt-soluble fractions. If the cells of *N. crassa* were incubated with the snail enzyme for a longer time, substantial amounts of Pᵢ and acid-soluble PolyPs were also lost. The salt-soluble fraction remained in the same amount as in the whole cells. The different behaviour of the PolyP fraction during protoplast formation from the cells of *N. crassa* indicated their different localization. It is likely that the fractions isolated by the ‘Langen and Liss method’ (Langen and Liss, 1958a,b) from *N. crassa* cells differ from each other not only in their molecular mass, but also in their intracellular localization and state in the cell. Thus, the most highly polymerized fractions are apparently located at the periphery of the cells, and removal of the cell walls results in their rapid hydrolysis. The less polymerized, acid-soluble PolyPs are evidently located within the cell, probably in the free state. In contrast to these fractions, the salt-soluble PolyPs in *N. crassa* are located in such a way that the protoplast formation has no effect on their amounts.

The removal of 30–35 % PolyPs from yeast cells during the lysis of cell walls by the snail enzyme was observed in *Saccharomyces carlbergensis* (Vagabov *et al.*, 1973) – these were alkali-soluble fractions (Table 5.3). A comparative investigation of the amounts of various PolyP fractions was carried out in *E. magnusii* spheroplasts (Table 5.4) and some sub-cellular fractions (Table 5.5). All of these data confirm the idea of PolyP localization in different compartments of cells of the lower eukaryotes.
Table 5.3
PolyP contents in cells and protoplasts of *Saccharomyces carlsbergensis* (expressed as mg of P per g of wet biomass) (Vagabov et al., 1973).

<table>
<thead>
<tr>
<th>Phosphorus compound</th>
<th>Whole cells</th>
<th>Protoplasts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total PolyP</td>
<td>1.786</td>
<td>1.050</td>
</tr>
<tr>
<td>Acid-soluble PolyP(I)</td>
<td>0.706</td>
<td>0.728</td>
</tr>
<tr>
<td>Salt-soluble PolyP(II)</td>
<td>0.516</td>
<td>0.299</td>
</tr>
<tr>
<td>Alkali-soluble PolyP(III) (pH 8–10)</td>
<td>0.208</td>
<td>0.023</td>
</tr>
<tr>
<td>Alkali-soluble PolyP(IV) (pH 12)</td>
<td>0.356</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 5.4
PolyP contents in cells and protoplasts of *Endomyces magnusii* enriched in phosphorus (expressed as mg of P per g of dry biomass) (Kulaev et al., 1967).

<table>
<thead>
<tr>
<th>Phosphorus compound</th>
<th>Whole cells</th>
<th>Protoplasts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total PolyP</td>
<td>20.6</td>
<td>14.3</td>
</tr>
<tr>
<td>Acid-soluble PolyP(I)</td>
<td>11.2</td>
<td>12.1</td>
</tr>
<tr>
<td>Salt-soluble PolyP(II)</td>
<td>3.4</td>
<td>1.4</td>
</tr>
<tr>
<td>Alkali-soluble PolyP(III) plus PolyP(IV)</td>
<td>3.3</td>
<td>0.8</td>
</tr>
<tr>
<td>Hot HClO₄ extract, PolyP(V)</td>
<td>2.5</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 5.5
Amounts of inorganic polyphosphates and other phosphorus compounds present in cells of *Endomyces magnusii*, and in the protoplasts, mitochondria and nuclei obtained from them (expressed as mg of P per g dry weight of cells) (Kulaev et al., 1967a,b; Afanas’eva et al., 1968; Skryabin et al., 1973).

<table>
<thead>
<tr>
<th>Phosphorus compound</th>
<th>Whole cells</th>
<th>Protoplasts</th>
<th>Mitochondria</th>
<th>Nuclei</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total PolyP</td>
<td>2.0</td>
<td>1.5</td>
<td>0.0</td>
<td>0.4</td>
</tr>
<tr>
<td>Acid-soluble PolyP(I)</td>
<td>0.2</td>
<td>0.7</td>
<td>0.0</td>
<td>—</td>
</tr>
<tr>
<td>Salt-soluble PolyP(II)</td>
<td>0.7</td>
<td>0.4</td>
<td>0.0</td>
<td>0.4</td>
</tr>
<tr>
<td>Alkali-soluble PolyP(III) plus PolyP(IV)</td>
<td>0.9</td>
<td>0.4</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Hot HClO₄ extract, PolyP(V)</td>
<td>0.2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Orthophosphate Pᵢ</td>
<td>3.2</td>
<td>1.1</td>
<td>0.3</td>
<td>0.1</td>
</tr>
<tr>
<td>Total Pᵢ and PolyP</td>
<td>5.2</td>
<td>2.6</td>
<td>0.3</td>
<td>0.5</td>
</tr>
<tr>
<td>Nucleotides</td>
<td>1.0</td>
<td>0.6</td>
<td>0.3</td>
<td>—</td>
</tr>
<tr>
<td>Nucleic acids</td>
<td>6.2</td>
<td>5.4</td>
<td>1.1</td>
<td>—</td>
</tr>
<tr>
<td>Phospholipids</td>
<td>1.2</td>
<td>1.2</td>
<td>0.9</td>
<td>0.2</td>
</tr>
<tr>
<td>Sugar phosphates</td>
<td>0.9</td>
<td>0.5</td>
<td>Trace</td>
<td>—</td>
</tr>
<tr>
<td>Total phosphorus</td>
<td>14.4</td>
<td>10.3</td>
<td>2.6</td>
<td>2.3</td>
</tr>
</tbody>
</table>
A part of the volutin granules was found in the cells of fungi and algae in vacuoles. The presence of PolyP granules in vacuoles was confirmed by cytochemistry and X-ray dispersion microanalysis in algae (Atkinson et al., 1974; Peverly et al., 1978; Adamec et al., 1979; Voříšek and Zachleder, 1984), and yeast (Voříšek et al., 1982). Indge (Indge, 1968a,b,c) was the first to indicate the presence of PolyPs in isolated yeast vacuoles. Since the work of Matile and his associates (Matile, 1978; Urech et al., 1978; Dür et al., 1979; Wiemken et al., 1979), which examined isolated vacuoles and used the method of differential extraction of cell pools, an opinion has been formed in the literature that nearly all of the PolyPs of yeast cells are located in these organelles. This opinion was supported by the investigation of a vacuole-defective yeast mutant, where no ‘NMR-visible’ PolyPs were found (Shirahama et al., 1996). However, it should be noted that the PolyP content in vacuoles strongly depends on the cultivation conditions. Data on the quantity of PolyPs in yeast vacuoles are the most numerous, but are still quite contradictory, since the authors used different strains and cultivation conditions. When Saccharomyces cerevisiae are grown on a poor mineral medium with arginine as the only nitrogen source and the culture growth rate is low, vacuoles may contain the major part of the yeast-cell PolyP pool (Wiemken et al., 1979). The amount of PolyPs in yeast vacuoles sharply increases when this microorganism accumulates metal cations. S. carlsbergensis vacuoles accumulated seven times more PolyP than the cytosol under incubation with phosphate, glucose and K⁺, and ten times more PolyP with Mn²⁺ (Lichko et al., 1982). Under other growth conditions, the vacuolar PolyP pool in S. cerevisiae was significantly lower. The vacuoles of S. cerevisiae growing on the ‘Reader medium’ contained nearly 15 % of the total amount of PolyPs in the cell (Trilisenko et al., 2002). The vacuoles of Candida utilis contained no more than 30 % of the total amount of PolyPs in the cell depending on the rate of culture growth and the nitrogen source in the medium (Nunez and Callieri, 1989). The vacuoles contained PolyPs of short chain lengths. These were determined to be ~ 5 and 15–25 phosphate residues (Wiemken et al., 1979). Later, this evaluation was confirmed by Trilisenko and co-workers (Trilisenko et al., 2002). From an NMR spectroscopic study of the two PolyP fractions obtained from isolated vacuoles of S. cerevisiae, it was shown that these organelles contain two fractions of PolyPs: 5 ± 5 and 20 ± 2 phosphate residues. PolyPs were also found in the vacuoles of Neurospora crassa (Cramer et al., 1980; Cramer and Davis, 1984) and Dunaliella salina (Pick and Weiss, 1991). With regard to the role of vacuoles as the main compartment of reserve compounds in eukaryotic microorganisms, it can be expected that other fungi, yeast and algae have a vacuolar pool of PolyPs.

The vesicles of endoplasmic reticulum of yeast cells contain PolyPs and also a specific system of their biosynthesis related to glycoproteins (Shabalin et al., 1979, 1985).

The cells of protozoa (Docampo and Moreno, 2001; Ruiz et al., 2001a; Rodriguez et al., 2002a,b) and the alga Chlamydomonas reinhardtii (Ruiz et al., 2001b) possess specific PolyP and Ca²⁺ storage organelles–acidocalcisomes–which are similar to vacuoles in some properties. These organelles possess PolyPs with chain lengths of 3, 50 and 700–800 phosphate residues. The latter high polymeric PolyPs were observed in small amounts. PolyPs were also found in the lysosomes of human fibroblasts (Pisoni and Lindley, 1992).

PolyP complexes with poly-β-hydroxybutyrate, similar to those in bacteria, were identified in eukaryotic membranes, including animal cells (Reush, 1989, 1999a, 2000).

PolyPs with short chain lengths of 14 phosphate residues were found in yeast mitochondria by using ³¹P NMR spectroscopy. This PolyP makes up to 10 % of the total content
Figure 5.2 PolyPs in different compartments of the cells of \textit{Saccharomyces cerevisiae} (lead staining) (Voříšek \textit{et al}., 1982): (a) PolyP in vacuoles (the arrow indicates a metachromatic granule); (b) PolyP in a cell nucleus (the arrow indicates the nuclear membrane); (c) PolyP in internal cell wall layers at ‘phosphate overplus’; (d) PolyP in vacuoles after ‘phosphate overplus’: the scale bars are equal to 0.5 µm.
of cellular PolyP detected by NMR spectroscopy (Beauvoit et al., 1989). PolyP was also found in a pure mitochondrial fraction of *Saccharomyces cerevisiae* by chemical extraction (Pestov et al., 2003). This acid-soluble PolyP, with an average chain length of about 25 phosphate residues, comprised ~ 7 % of the whole PolyP content of the cell. PolyP was also observed in mitochondria of mammalian cells (Kornberg et al., 1999).

We have no positive evidence of the presence of PolyPs in chloroplasts. In chloroplasts of *Acetabularia mediterranea* (Rubtsov et al., 1977) and in cotton plants (Valikhanov and Sagdulaev, 1979), PolyPs were not found.

The presence of specific fractions of high-molecular-weight PolyPs in the nuclei of different organisms has been demonstrated by many researchers (Penniall and Griffin, 1964; Goodman et al., 1968; Sauer et al., 1956; Bashirelashi and Dallam, 1970; Kulaev et al., 1970b; Skryabin et al., 1973; Mansurova et al., 1975a; Offenbacher and Kline, 1984; Pilatus et al., 1989; Kumble and Kornberg, 1995, 1996).

PolyPs were found in isolated nuclei from *N. crassa* (Kulaev et al., 1970b). These were extracted with saturated salt solution (see Table 5.2). The presence of PolyPs in this fraction was proved exclusively by chromatography. Among the products of partial hydrolysis of this fraction by using the method of Thilo and Wicker (1957), cyclotriphosphate was found. The phosphorus contained in the salt-soluble nuclear fraction amounted to 15 % of the total PolyP phosphorus of the salt-soluble fraction of whole cells. Further purification of the nuclear fraction by centrifugation under a sucrose gradient or by other methods did not result in the removal of PolyPs from the nuclei. Similar results were obtained for *E. magnusii* (Skryabin et al., 1973). The PolyP content of the nuclei represented over 50 % of the total salt-soluble PolyP of the whole cells. No other PolyP fractions were found in the nuclei of this organism. PolyP represented ~ 13–15 % of the total phosphorus of isolated nuclei.

PolyPs with an average chain length of 100 residues were observed in the nuclei of *Physarum polycephalum* (Pilatus et al., 1989). Nuclear preparations of mammalian cells were found to be relatively enriched in PolyPs (Kumble and Kornberg, 1995; Kornberg, 1999).

Amounts of PolyP in the nuclei might be low; however, these compounds are conserved there during evolution, occurring in the nuclei of both the lower eukaryotes and mammals.

As a whole, PolyPs in cells of eukaryotes are characterized by plural localization, depending on the cell age or environmental conditions. For example, cytochemical data on the localization of PolyPs in the cells of *Saccharomyces cerevisiae* are presented in Figure 5.2, according to Vöršek et al. (1982). Further studies of this problem may provide new data on the functions of these biopolymers.
6

ENZYMES OF POLYPHOSPHATE BIOSYNTHESIS AND DEGRADATION

6.1 Enzymes of Polyphosphate Biosynthesis

6.1.1 Polyphosphate Kinase (Polyphosphate:ADP Phosphotransferase, EC 2.7.4.1)

The reaction of reverse transfer of energy-rich phosphate residues from ATP to PolyPs and from PolyPs to ADP, thus linking energy-rich pools, was discovered by Kornberg and co-workers (Kornberg et al., 1956; Kornberg, 1957 a,b):

\[\text{PolyP}_n + \text{ATP} \rightleftharpoons \text{PolyP}_{n+1} + \text{ADP} \] (6.1)

The enzyme was partly purified from Propionibacterium shermanii (Robinson et al., 1987), and was shown to be a monomeric enzyme with a molecular mass of \(\sim 83 \) kDa. It was demonstrated that short-chain PolyPs of 6–80 residues serve as primers for the synthesis of long-chain PolyPs using ATP by a strictly processive mechanism. The largest PolyPs synthesized was PolyP\(_{750}\).

The polyphosphate kinase (ppk1) purified from Escherichia coli was a membrane-bound homotetramer with a sub-unit molecular mass of 80 kDa (Ahn and Kornberg, 1990; Akiyama et al., 1992). The crystal structure of this enzyme has been determined (Zhu et al., 2003). This enzyme is responsible for the processive synthesis of long PolyP\(_{750}\) chains \textit{in vivo} and needs Mg\(^{2+}\) for its activity (Ahn and Kornberg, 1990). The enzyme was shown to be multifunctional. It catalyses the reverse reaction of ATP synthesis from PolyPs (Kornberg, 1957a; Murata et al., 1988; Ahn and Kornberg, 1990; Kuroda and Kornberg, 1997) and...
Enzymes of polyphosphate biosynthesis and degradation

can use PolyP as a donor instead of ATP, thereby converting GDP and other nucleoside diphosphates to nucleotide triphosphates (Kuroda and Kornberg, 1997). This reaction was observed in crude membrane fractions of *E. coli* and *Pseudomonas aeruginosa*, as well as in purified enzyme preparations obtained from *E. coli*. Membrane fractions obtained from *E. coli* mutants lacking the ppk1 gene have no such activity. The substrate specificity order was ADP > GDP > UDP, CDP; the activity with ADP was twice as high as that with GDP. It was confirmed that polyphosphate kinase efficiently catalysed UTP regeneration in the cyclic system of N-acetyl lactosamine synthesis (Noguchi and Shiba, 1998). This activity of pure polyphosphate kinase was used to develop a method of oligosaccharide synthesis (Noguchi and Shiba, 1998). Although the transfer of a phosphate from PolyP to GDP by polyphosphate kinase to produce GTP was the predominant reaction, the enzyme also transferred a pyrophosphate group to GDP to form a linear guanosine 5'-tetraphosphate (Kim et al., 1998). The enzyme is also capable of autophosphorylation using ATP as a phosphate donor (Tzeng and Kornberg, 2000). The diverse functions of ppk1 in *E. coli* are realized by means of different sub-unit organization. Radiation target analysis revealed that the principal functional unit of ppk1 is a dimer, but the synthesis of linear guanosine tetraphosphate and autophosphorylation require trimeric and tetrameric states, respectively (Tzeng and Kornberg, 2000). The polyphosphate kinase of *Vibrio cholerae* is also a homotetramer (Ogawa et al., 2000b). It resembles the ppk1 of *E. coli* in size and multiple activities: processive PolyP synthesis from ATP, nucleoside diphosphate kinase activity with ADP and GDP as acceptors and PolyP as a donor, ppGpp synthesis from GDP, and autophosphorylation. The most notable differences are in the kinetic parameters for ATP: K_m is 0.2 and 2 mM for the ppk1 of *V. cholerae* and *E. coli*, respectively (Ogawa et al., 2000b).

Polyphosphate kinase was purified from *Acinetobacter* sp. (Trelstad et al., 1999). It was a 79 kDa monomer. In contrast to the *E. coli* enzyme, the polyphosphate kinase purified from this bacterium seems to work only in the forward direction, i.e. it produces but does not degrade PolyPs.

The ppk1 genes of *E. coli* (Akiyama et al., 1992), *Klebsiella aerogenes* (Kato et al., 1993b), *Neisseria meningitidis* (Tinsley and Gotschlich, 1995), *Pseudomonas aeruginosa* (Ishige et al., 1998), *Acinetobacter* sp. (Geissdorfer et al., 1998), *V. cholerae* (Ogawa et al., 2000b), *Rhodococcus tenuis* (McMahon et al., 2002) and many other bacteria (see http://www.expasy.org) have been cloned, sequenced and characterized. The deduced amino acid sequences of these enzymes show an extensive homology in different bacterial species (Figure 6.1) (Tzeng and Kornberg, 1998). Some conserved amino acid residues are important for enzymatic activity. Replacement of conserved His-441 and His-460 by either glutamine or alanine by site-specific mutagenesis rendered an enzymatically inactive protein in *E. coli* (Kumble et al., 1996).

High conservatism of the ppk1 gene structure reveals polyphosphate kinase in microorganisms, microbial associates and activated sludges. Fragments of putative ppk genes were retrieved from a pure culture of *Rhodococcus tenuis* and from microorganisms of activated sludge using PCR primers (McMahon et al., 2002). Four novel ppk homologs were found in the sludge, and two of them (types I and II) shared a high degree of amino acid similarity with *R. tenuis* ppk (86 and 87%, respectively). Dot-blot analysis of total RNA extracted from the sludge demonstrated the presence of the Type I ppk mRNA, indicating that this gene is expressed during the process of phosphate removal. Inverse PCR was used to obtain a full Type I sequence from sludge DNA, and a full-length ppk was cloned, overexpressed, and purified to near homogeneity. The purified polyphosphate kinase has a specific activity
comparable with that of other polyphosphate kinases, requires Mg$^{2+}$, and does not appear to operate in reverse (McMahon et al., 2002).

In many bacteria, polyphosphate kinase is the main enzyme of PolyP metabolism. This was confirmed by a sharp decrease of PolyP content in ppk1 mutants of *E. coli* (Crooke et al., 1994; Rao and Kornberg, 1996; Rao et al., 1998), *N. meningitidis* (Tinsley and Gotschlich, 1995), and *V. cholerae* (Ogawa et al., 2000b).

In a null mutant of *P. aeruginosa* lacking ppk1, another polyphosphate kinase activity distinguished from ppk1 was revealed (Ishige et al., 2002; Zhang et al., 2002). The enzyme has been purified 1300-fold to homogeneity from lysates of *P. aeruginosa*. As compared with ppk1, ppk2 produces PolyPs with a lower chain length (Figure 6.2) and has a preference for Mn$^{2+}$ over Mg$^{2+}$. The ppk2 of *P. aeruginosa* differs from ppk1 in two other features. First, ppk2 utilizes PolyP to make GTP at a rate 75-fold higher than the synthesis of PolyP
Enzymes of polyphosphate biosynthesis and degradation

from GTP. For ppk1, the activity of PolyP synthesis is 4-fold higher than the activity of PolyP utilization. Secondly, ppk2 uses GTP and ATP equally well in PolyP synthesis, but ppk1 is strictly specific for ATP in the PolyP synthesis. PolyPs of 15–700 phosphate residues can serve as a substrate, but PolyPs of 30–50 residues are optimal for GTP synthesis by ppk2. GDP is more preferable than ADP among nucleoside diphosphate acceptors. Thus, in \textit{P. aeruginosa} the ppk2 function is first of all utilization of PolyP.

The gene encoding ppk2 (\textit{ppk2}) was identified from the amino acid sequence of the purified protein. It encodes a protein of 357 amino acids with a molecular mass of 40.8 kDa. Both of the polyphosphate kinases ppk1 and ppk2 may be involved in regulation of the level of ribonucleoside triphosphates and deoxyribonucleoside triphosphates that modulate cell division and survival in the stationary phase (Ishige \textit{et al.}, 2002).

Sequences homologous to ppk2 were found in two other proteins in \textit{P. aeruginosa}, in two Archaea, and in 32 other bacteria including several pathogenic species (Ishige \textit{et al.}, 2002; Zhang \textit{et al.}, 2002). Table 6.1 shows the distribution of \textit{ppk1} and \textit{ppk2} gene homologues in microorganisms (Zhang \textit{et al.}, 2002). These are lacking in most currently sequenced genomes of Eukarya and Archaea (Kornberg \textit{et al.}, 1999).

Polyphosphate kinase activity was observed in the yeast vacuolar membrane, but the activity when consuming PolyP and forming ATP was higher than in PolyP synthesis (Shabalin \textit{et al.}, 1977). The enzyme has not been purified, and the significance of PolyP synthesis using ATP in certain membrane fractions in yeast cells needs further investigations. The level of this activity observed in yeast was insufficient to explain the synthesis of a large amount of PolyP in this microorganism.

The polyphosphate kinase from the yeast cell homogenate purified by Felter and Stahl (Felter and Stahl, 1973) was shown to be actually diadenosine-5',5'''-P1, P4 tetraphosphate a,b-phosphorylase (AP4 phosphorylase). The enzyme acting in concert with one or more yeast polyphosphatases provided the production of \textit{32}P-labelled ATP in the presence of \textit{32}P-labelled PolyP and ADP (Booth and Guidotti, 1995):

\[
[\text{32P}] \text{PolyP}_n \xrightarrow{\text{exopolypophosphatase}} [\text{32P}] \text{PolyP}_{n-1} + \text{32P}_i
\]
(6.2)

\[
\text{diadenosine-5',5'''-P1, P4 tetraphosphate} \xrightarrow{\text{AP4 phosphorylase}} 2 \text{ADP}
\]
(6.3)

\[
[\text{32P}_i] + \text{ADP} \rightarrow [\text{32P}] \text{ADP} + \text{P}_i
\]
(6.4)

\[
[\text{32P}] \text{ADP} + \text{ADP} \xrightarrow{\text{adenylate kinase}} [\text{32P}] \text{ATP} + \text{AMP}
\]
(6.5)

The resulting reaction was probably observed by Felter and Stahl (1973):

\[
[\text{32P}] \text{PolyP}_n + \text{ADP} \rightarrow [\text{32P}] \text{PolyP}_{n-1} + [\text{32P}] \text{ATP}
\]
(6.6)

It was reported that the archaeon \textit{Sulfolobus acidocaldarius} possessed a glycogen-bound polyphosphate kinase, which was active only as a native complex with glycogen (Skorko \textit{et al.}, 1989). This result is doubted by Cardona \textit{et al.} (2001) who repeated the purification
Table 6.1 Distribution of the *ppk1* and *ppk2* gene homologs among microorganisms^a (Zhang et al., 2002).

<table>
<thead>
<tr>
<th>ppk1 and ppk2</th>
<th>ppk1 only</th>
<th>Neither ppk1 or ppk2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agrobacterium tumefaciens</td>
<td>Genome complete</td>
<td>Aeropyrum pernix<sup>b</sup></td>
</tr>
<tr>
<td>Brucella melitensis</td>
<td>Bacillus anthracis</td>
<td>Aquifex aeolicus</td>
</tr>
<tr>
<td>Burkholderia fungorum (2)</td>
<td>Bacillus halodurans</td>
<td>Arachaeoglobus fulgidus<sup>b</sup></td>
</tr>
<tr>
<td>Campylobacter jejuni</td>
<td>Clostridium acetobutylicum</td>
<td>Batillus subtilis</td>
</tr>
<tr>
<td>Caulobacter crescentus</td>
<td>Escherichia coli</td>
<td>Borrelia burgdorferi</td>
</tr>
<tr>
<td>Chlorobium tepidum</td>
<td>Helicobacter pylori</td>
<td>Buchnera aphidicola str. Sg</td>
</tr>
<tr>
<td>Chloroflexus aurantiacus</td>
<td>Mycobacterium leprae</td>
<td>Buchnera sp. APS</td>
</tr>
<tr>
<td>Deinococcus radiodurans</td>
<td>Neisseria meningitidis</td>
<td>Chlamydia muridarum</td>
</tr>
<tr>
<td>Magnetospirillum magnetotacticum (2)</td>
<td>Salmonella typhi</td>
<td>Chlamydia trachomatis</td>
</tr>
<tr>
<td>Mesorhizobium loti (2)</td>
<td>Salmonella typhimurium</td>
<td>Chlamydophila pneumoniae</td>
</tr>
<tr>
<td>Methanosarcina acetivorans</td>
<td>Xylella fastidiosa</td>
<td>Clostridium perfringens</td>
</tr>
<tr>
<td>Methanosarcina mazei<sup>b</sup></td>
<td>Yersinia pestis</td>
<td>Fusobacterium nucleatum</td>
</tr>
<tr>
<td>Mycobacterium tuberculosis</td>
<td>Lactococcus lactis</td>
<td>Haemophilus influenzae</td>
</tr>
<tr>
<td>Myxococcus xanthus</td>
<td>Listeria innocua</td>
<td>Halobacterium sp. NRC-1<sup>b</sup></td>
</tr>
<tr>
<td>Nostoc punctiforme (2)</td>
<td>Listeria monocytogenes</td>
<td>Lactobacillus curvatus</td>
</tr>
<tr>
<td>P. aeruginosina (3)</td>
<td>Methanococcus jannaschii<sup>b</sup></td>
<td>Listeria monocytogenes</td>
</tr>
<tr>
<td>Prochlorococcus marinus</td>
<td>Methanopyrus kandleri<sup>b</sup></td>
<td>Mycoplasma genitalium</td>
</tr>
<tr>
<td>Rhodobacter sphaeroides</td>
<td>Methanobrevibacter smithii<sup>b</sup></td>
<td>Mycoplasma pneumoniae</td>
</tr>
<tr>
<td>Rhodopseudomonas palustris</td>
<td>Pyrococcus abyssi<sup>b</sup></td>
<td>Mycoplasma pulmonis</td>
</tr>
<tr>
<td>Rhodospirillum rubrum</td>
<td>Pyrococcus furiosus<sup>b</sup></td>
<td>Pasteurella multocida</td>
</tr>
<tr>
<td>Sinorhizobium meliloti (3)</td>
<td>Pyrococcus horikoshii<sup>b</sup></td>
<td>Pyobaculum aerophilum<sup>b</sup></td>
</tr>
<tr>
<td>Streptomyces coelicolor</td>
<td>Rickettsia conorii</td>
<td>Pyrococcus furiosus<sup>b</sup></td>
</tr>
<tr>
<td>Synechococcus sp. WH 8102</td>
<td>Rickettsia prowazekii</td>
<td>Pyrococcus furiosus<sup>b</sup></td>
</tr>
<tr>
<td>Synechocystis sp. PCC6803</td>
<td>Saccharomyces cerevisiae</td>
<td>Rickettsia prowazekii</td>
</tr>
<tr>
<td>Thermosynechococcus elongatus</td>
<td>Schizosaccharomyces pombe<sup>c</sup></td>
<td>Rickettsia prowazekii</td>
</tr>
<tr>
<td>Vibrio cholerae</td>
<td>Staphylococcus aureus</td>
<td>Salamandra salamandra<sup>c</sup></td>
</tr>
<tr>
<td>Xanthomonas axonopodis</td>
<td>Streptococcus pneumoniae</td>
<td>Sannolobus solfataricus<sup>b</sup></td>
</tr>
<tr>
<td>Xanthomonas campestris</td>
<td>Streptococcus pyogenes</td>
<td>Sulfolobus tokodaii<sup>b</sup></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ppk2 only</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corynebacterium glutamicum (2)</td>
</tr>
<tr>
<td>Magnetococcus MC-1 (2)</td>
</tr>
<tr>
<td>Plectonema boryanum</td>
</tr>
</tbody>
</table>

^a The numbers in parentheses indicate the number of homologs of *ppk2* genes in the organism.
^b Archaea.
^c Eukaryotes.
Enzymes of polyphosphate biosynthesis and degradation

procedure for a glycogen-bound protein of 57 kDa developed by Skorko et al. (1989). No polyphosphate kinase activity was found in the purified protein, when using recently developed enzymatic methods of PolyP analysis. Furthermore, no polyphosphate kinase activity was found associated with any of the proteins bound to the glycogen–protein complex. The gene corresponding to the 57-kDa protein was cloned and functionally characterized. The predicted product of the gene did not show similarity to any described ppk but to glycogen synthases instead. In agreement with these results, the protein showed only glycogen synthase activity (Cardona et al., 2001). It should be noted that PolyP identification in an earlier paper (Skorko et al., 1989) is based on electrophoresis in polyacrylamide gel, autoradiography, and subsequent acid hydrolysis or alkali phosphatase hydrolysis of radioactive spots. Such an assay could not exclude the possibility that the product obtained is not PolyP but phosphorylated protein(s).

In conclusion, it should be mentioned that PolyP synthesis using ATP or GTP has been reliably demonstrated in eubacteria only. In many bacteria, polyphosphate kinase is the main enzyme of PolyP synthesis. The existence of enzymes responsible for PolyP synthesis using ATP in eucaryotes and archaea is still in question.

6.1.2 3-Phospho-D-Glyceroyl-Phosphate:Polyphosphate Phosphotransferase (EC 2.7.4.17)

This enzyme, which is also called 1,3-diphosphoglycerate-polyphosphate phosphotransferase (Kulaev and Bobyk, 1971; Kulaev et al., 1971), catalyses the following reaction:

\[
3\text{-phospho-D-glyceroyl-1-phosphate} + \text{PolyP}_n \rightarrow 3\text{-phosphoglycerate} + \text{PolyP}_{n+1}
\]

(6.7)

This activity was found first in the Neurospora crassa mutant deficient in adenine, where the concentrations of ATP and other adenyl nucleotides were sharply reduced (Kulaev and Bobyk, 1971).

The incubation mixture, which afforded the maximum rate of incorporation of 32P-orthophosphate into inorganic PolyP, contained glycylglycine buffer (pH 7.4), MgCl$_2$ (6 μM), PolyP$_{75}$ (0.015 μM), fructose-1,6-diphosphate (5.2 μM), 3-phosphoglyceraldehyde dehydrogenase (14.4 μg), NAD (8 μM), Na$_2$H32PO$_4$ (8 μM) and a cell-free extract of N. crassa. This enzyme system resulted in the incorporation of 32P into high-molecular-weight PolyP only. The radioactive product obtained was undialysable and almost completely (80 %) hydrolysed to orthophosphate by treatment with 1 N HCl for 10 min at 100 °C. Tricyclophosphate was obtained among the products of incomplete hydrolysis by Thilo and Wiecker’s method (Thilo and Wiecker, 1957). In order to prove that PolyP synthesis by this system is a result of glycolytic phosphorylation, the effects thereon of glycolytic and oxidative phosphorylation inhibitors were examined. It was found that iodoacetic acid (12 mM) and a mixture of sodium arsenate (50 mM) and sodium fluoride (2 mM) inhibited PolyP biosynthesis in this system by 96 and 95 %, respectively. Inhibitors of oxidative phosphorylation, 2,4-DNP (0.014 mM) and sodium azide (0.03 mM) had no effect on the incorporation of 32P-orthophosphate into the PolyP, but an increase in the concentration to 1 mM retarded the process by 25%. These results therefore confirm the hypothesis that in such an enzyme system PolyP biosynthesis is associated with glycolytic phosphorylation reactions.
Table 6.2 Specific activities of 1,3-diphosphoglycerate–polyphosphate phosphotransferase in some microorganisms (Kulaev et al., 1971).

<table>
<thead>
<tr>
<th>Microorganism</th>
<th>1,3-Diphosphoglycerate–polyphosphate phosphotransferase activity (mE per mg of protein)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neurospora crassa (wild strain)</td>
<td>0.53</td>
</tr>
<tr>
<td>Neurospora crassa (adenine-deficient mutant)</td>
<td>1.45</td>
</tr>
<tr>
<td>Penicillium chrysogenum</td>
<td>0.28</td>
</tr>
<tr>
<td>Propionibacterium schermanii</td>
<td>0.04</td>
</tr>
<tr>
<td>Micrococcus lysodeikticus</td>
<td>0.06</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>0.14</td>
</tr>
<tr>
<td>Actinomyces aureofaciens</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Furthermore, this activity was found in a cell-free extract of the wild strain of *N. crassa* and in other microorganisms including bacteria, but was much lower than in an adenine-deficient *N. crassa* strain (Table 6.2). This pathway of PolyP synthesis probably occurs during glycolytic phosphorylation under a low ATP content in the cell and might actually be involved in the biosynthesis of some, presumably low-molecular-weight, PolyP fractions. Some authors, however, believe that PolyP biosynthesis in the lower eucaryotes to be apparently provided by 1,3-diphosphoglycerate:PolyP phosphotransferase (Schuddemat et al., 1989a). This enzyme has not been purified and therefore needs further investigation.

6.1.3 Dolichyl-Diphosphate:Polyphosphate Phosphotransferase (EC 2.7.4.20)

This enzyme’s activity was found in the membrane fraction of yeast cells (Shabalin et al., 1979, 1985; Naumov et al., 1985; Kulaev et al., 1987; Shabalin and Kulaev, 1989), where PolyP synthesis using β-phosphate groups of dolichyl diphosphate (Figure 6.3) took place:

\[
dolichyl diphosphate + \text{PolyP}_n \longrightarrow \text{dolichyl phosphate} + \text{PolyP}_{n+1}
\]

The enzyme was solubilized from the membrane fraction using Triton X-100 (Shabalin and Kulaev, 1989). The specific activity of the solubilized preparation was 20 times higher than that in protoplast lysate. The dolichyl-diphosphate:PolyP phosphotransferase activities of the membrane preparation and solubilized fraction were etal-dependent and exhibited the maximum activity in the presence of Mg$^{2+}$ or Ca$^{2+}$. The same membrane fraction posessed
Enzymes of polyphosphate biosynthesis and degradation

Figure 6.4 Two possible pathways for dolichyl diphosphate dephosphorylation in yeast cells: Dol-PP, dolichyl diphosphate; Dol-P, dolichyl phosphate.

Figure 6.5 The tentative coupling of PolyP and mannan biosynthesis in yeast: Dol-PP, dolichyl diphosphate; Dol-P, dolichyl phosphate; GDPMan, GDP mannose; Dol-PP-Man, dolichyl diphosphate mannose; (Man)$_n$, mannan, where n is the number of mannose residues.

dolichyl-diphosphate:phosphohydrolase activity, which was, however, inhibited by divalent metal cations. Thus, depending on the divalent metal cations, two pathways of dolichyl diphosphate dephosphorylation may occur in some yeast cell membranes (Figure 6.4). The coupling of mannan and PolyP biosynthesis was proposed (Figure 6.5). However, no genetic data on this enzyme are available.
It is probable that a similar pathway of PolyP synthesis which is related to the biosynthesis of some biopolymers may exist in bacteria. Undecaprenyl diphosphate, which could be involved in this pathway, is found in bacteria.

6.2 Enzymes of Polyphosphate Degradation

6.2.1 Polyphosphate-Glucose Phosphotransferase (EC 2.7.1.63)

This enzyme catalyses the phosphorylation of glucose using polyP or ATP as the phosphoryl donor:

\[\text{PolyP} _n + \text{D-glucose} \rightarrow \text{PolyP} _n-1 + \text{D-glucose 6-phosphate} \quad (6.9) \]

The enzyme activity was first observed in *Mycobacterium phlei* (Szymona, 1957) and then in numerous bacteria (Szymona *et al.*, 1962; Szymona and Ostrowsky, 1964), including other Mycobacteria (Szymona and Szymona, 1978), *Corynebacterium diphtheriae* (Szymona and Szymona, 1961) and *Nocardia minima* (Szymona and Szymona, 1979). The screening for polyphosphate glucokinase activities in a variety of different organisms showed its presence in the phylogenetically ancient bacteria belonging to the *Actinomycetales* (Szymona *et al.*, 1967, 1969, 1977; Kulaev and Vagabov, 1983). This activity was observed in *Microlunatus phosphorus*, a bacteria from activated sludge accumulating high levels of PolyPs (Kuroda and Ohtake, 2000).

The enzyme activity was not found in eucaryotes. The discovery of this enzyme was of the greatest significance for our understanding of the role of PolyPs: it provided the first evidence of the possible function of PolyPs as a phosphate and energy donor without the nucleoside phosphate system.

PolyP\(_3\) and PolyP\(_4\) were reported to be the end products formed from long-chain PolyPs in glucose phosphorylation (Szymona and Widomski, 1974; Kowalczyk and Phillips, 1993). PolyP glucokinase utilized polyP via a quasi-processive or non-processive mechanism (Pepin and Wood, 1986, 1987; Hsieh *et al.*, 1996a,b). The enzyme from *Mycobacterium tuberculosis* utilizes a wide range of PolyP sizes by a non-processive mechanism (Hsieh *et al.*, 1996a). The enzyme from *Propionibacterium shermanii*, on the other hand, shows a transition from a strictly processive mode with very long PolyPs to a strictly non-processive mode with short PolyPs below 100 residues. Intermediate sizes of PolyPs (∼100–200 residues) are utilized by a quasi-processive mechanism, which is evidenced by a noticeable broadening of the range of polyP sizes with the reaction time.

There have been numerous reports on the occurrence of various isoenzymes of polyphosphate glucokinase in different microorganisms and on differences in the molecular weights of the enzyme in the same organism (Szymona *et al.*, 1977; Kowalska *et al.*, 1979; Pastuszak and Szymona, 1980). Szymona *et al.* (1977) found that the molecular mass of native enzyme from *M. tuberculosis* was 118 kDa, while Pastuszak and Szymona (1980) found a larger form of the enzyme. The enzyme from *M. phlei* was found to be a protein of 113 kDa (Szymona and Ostrowski, 1964) or 275–280 kDa (Girbal *et al.*, 1989). The native enzyme from *P. shermanii* was reported to have a molecular mass of 31 kDa (Clark,
The purified enzymes from *P. shermanii* (Phillips et al., 1993) and *M. tuberculosis* (Hsieh et al., 1993b) also showed multiple proteins by HPLC gel filtration, native PAGE and isoelectric focusing (IEF)–PAGE, although a single band was observed by SDS–PAGE. To explain the existence of multiple forms of glucokinase, it is assumed that the enzyme may contain residual amounts of strongly bound PolyPs of various chain lengths. As detailed by Phillips et al., (1999), the enzymes from *P. shermanii*, *M. tuberculosis* and *Propionibacterium arabinosum* were all found to be homodimers of 30 kDa sub units.

The common feature of PolyP glucokinases from different sources was that the extracts containing a polyphosphate glucokinase activity also contained an ATP-dependent activity. Stable co-purification of these activities suggested that both of them can be catalysed by a single enzyme (Szymona et al., 1977; Pepin and Wood, 1986). To answer the question of bifunctionality, Phillips and co-workers carried out extensive purification of the enzymes from *P. shermanii* (Phillips et al., 1993), *M. tuberculosis* (Hsieh et al., 1993a) and *P. arabinosum* (Phillips et al., 1999). A detailed characterization of enzyme preparations unequivocally revealed that a single enzyme from these sources catalyses both polyP- and ATP-dependent glucokinase activities (Hsieh et al., 1993a; Phillips et al., 1993; Kowalczyk et al., Phillips et al., 1999).

The most convincing evidence was cloning the gene from *M. tuberculosis* (Hsieh et al., 1996a). It was shown that the recombinant protein, expressed and purified from *E. coli*, contained both activities. The ability to utilize both inorganic (PolyP) and organic (ATP) phosphoryl donors in glucose phosphorylation suggested that, due to fundamental differences in the structures of the two phosphate donors, the residues involved in their binding may also be different. Horn et al. (1991), Phillips et al. (1993a), and Hsieh et al. (1993a) provided evidence of separate binding sites for the substrates.

Despite the lack of sequence similarities between eukaryotic hexokinases and prokaryotic glucokinases in the putative adenosine site, Hsieh (1996) found some structure similarities between the adenosine site in polyphosphate glucokinase and the proposed adenosine site in yeast hexokinase. Comparison of the kinetic features of PolyP- and ATP-dependent reactions for the enzymes from different sources supports the hypothesis that glucokinase in the earliest organisms may have predominantly been dependent on PolyP rather than ATP (Phillips et al., 1999). There is a progressive decrease in the efficiency of PolyP utilization by glucokinases, from older to newer organisms. The polyphosphate glucokinase from *Microlunatus phosphovorus* was closely related to the polyphosphate/ATP–glucokinase of *Mycobacterium tuberculosis*, but it could not phosphorylate glucose with ATP (Tanaka et al., 2003).

An enzyme responsible for the PolyP- and ATP-dependent mannokinase activities was purified to homogeneity from a cell extract of the bacterium *Arthrobacter* sp. (Mukai et al., 2003). The enzyme concerned was a monomer with a molecular mass of 30 kDa. This enzyme phosphorylated glucose and mannose with a high affinity for glucose, utilizing PolyP as well as ATP. The catalytic sites for PolyP-dependent phosphorylation and ATP-dependent phosphorylation of the enzyme were found to be shared, and the PolyP-utilizing mechanism of the enzyme was shown to be non-processive (Mukai et al., 2003). The deduced amino acid sequence of the polypeptide exhibited homology to the amino acid sequences of the PolyP/ATP–glucokinase of *M. tuberculosis* (level of homology, 45 %), ATP-dependent glucokinases of *Corynebacterium glutamicum* (45 %), *Renibacterium salmoninarum* (45 %) and *Bacillus subtilis* (35 %) (Mukai et al., 2003).

All of these observations suggest a hypothesis that PolyP was a precursor of ATP in bioenergetic processes at the earliest stage of evolution (Kulaev, 1971, 1974). There might
have been a gradual transition from PolyP to ATP as the phosphoryl donor in glucose phosphorylation (Phillips et al., 1999).

6.2.2 NAD Kinase (ATP:NAD 2’-Phosphotransferase, EC 2.7.1.23)

This enzyme catalyses the following reaction:

\[\text{ATP} + \text{NAD} \rightarrow \text{ADP} + \text{NADP} \] \hspace{1cm} (6.10)

The above reaction was known many years ago (Kornberg, 1950; Wang and Kaplan, 1954) and found both in procaryotes and eucaryotes. In *Brevibacterium ammoniagenes* (Murata et al., 1979), *Micrococcus luteus* and *Corynebacterium ammoniagenes* (Fillipovich et al., 2000) phosphorylation of NAD using PolyP as a phosphate donor was revealed:

\[\text{PolyP}_n + \text{NAD} \rightarrow \text{PolyP}_{n-1} + \text{NADP} \] \hspace{1cm} (6.11)

It has been established that in some bacteria one enzyme displays both activities (Kawai et al., 2000). An enzyme with both PolyP- and ATP-dependent NAD kinase activities was isolated from *Micrococcus flavus*. This enzyme is a dimer consisting of 34 kDa sub-units. A gene *Rv1695* has been found in *Mycobacterium tuberculosis* and proposed to also be a PolyP-dependent NAD kinase. By cloning and expression in *E. coli*, *Rv1695* was shown to encode PolyP/ATP–NAD kinase and was named as *ppnk*. The *ppnk* product, a recombinant PolyP/ATP–NAD kinase (Ppnk), was purified and characterized. This enzyme was a tetramer consisting of 35 kDa sub-units when expressed in *E. coli*. PolyP/ATP–NAD kinases of *M. flavus* and Ppnk of *M. tuberculosis* H37Rv phosphorylated NAD, using PolyP and nucleoside triphosphates as the phosphoryl donors (Kawai et al., 2000).

NAD kinase was purified to homogeneity from *E. coli*. The enzyme was a hexamer consisting of 30 kDa sub-units and utilized ATP or other nucleoside triphosphates as phosphoryl donors for the phosphorylation of NAD. This enzyme could not use PolyP. The deduced amino acid sequence exhibited a homology with that of *M. tuberculosis* PolyP/ATP–NAD kinase (Kawai et al., 2001). Therefore, NAD kinases show the same features as PolyP/ATP glucose kinases. The enzymes are active or not active with PolyP, depending on the microorganism under study. The evolutionally older *Mycobacteria* possess both activities, in contrast to the evolutionally younger *E. coli*. This fact, together with data on the distribution of polyphosphate glucokinase in bacteria, confirms the idea of the greater role of PolyPs in cell energetics at the earliest stages of evolution (Kulaev, 1971, 1974).

6.2.3 Exopolyphosphatase (Polyphosphate Phosphohydrolase, EC 3.6.1.11)

One of the most important enzymes involved in PolyP metabolism is exopolyphosphatase, the enzyme that splits P_i from the end of the PolyP chain:

\[\text{PolyP}_n + \text{H}_2\text{O} \rightarrow \text{PolyP}_{n-1} + \text{P}_i \] \hspace{1cm} (6.12)
The first data on this enzyme were obtained by Kitasato (1928), Ingelman and Malmgren (1947, 1948, 1949) Krishnan (1952), Malmgren (1949, 1952) and Grossman and Lang (1962).

Much data on the properties of exopolyphosphatases were obtained from different sources, and have been reviewed (Kulaev, 1979; Kulaev and Vagabov 1983). The greatest difficulty in the investigation of exopolyphosphatases was their low stabilities at purification. The first purified preparation of an exopolyphosphatase with high activity and stability was obtained from the S. cerevisiae cell envelope (Andreeva et al., 1990).

In recent years, the overview of the exopolyphosphatases classification and function has been renewed a great deal. A significant diversity of exopolyphosphatases in microorganisms and sufficient differences in their structure and properties in procaryotes and eucaryotes have come to light.

The most important enzymes exhibiting exopolyphosphatase activity in bacteria are the exopolyphosphatase encoded by the ppx gene (Akiyama et al., 1993) and the guanosine pentaphosphate phosphohydrolase encoded by the gppA gene (Keasling et al., 1993). The enzymes encoded by the ppx and gppA genes demonstrate a great sequence similarity, i.e. 39% identity over an overlapping region of 492 residues (Reizer et al., 1993). These proteins are of about the same length (513 amino acid residues for ppx and 494 for pppGpp phosphohydrolase). Both enzymes possess one hydrophobic region. The ppx and gppA possess five conserved boxes, which suggest that the two phosphatases belong to the sugar kinase/actin/heat-shock protein hsp70 superfamily (Reizer et al., 1993).

The exopolyphosphatase encoded by the ppx of E. coli is a dimer with a sub-unit molecular mass of about 58 kDa (Akiyama et al., 1993). Its affinity to high-molecular-weight PolyP was nearly 100-fold higher than that of yeast polyphosphatases ($K_m = 9 \text{nM PolyP}_{500}$ as a polymer). This enzyme exhibits a high requirement for K^+ (21-fold stimulation by 175 mM of K^+) (Akiyama et al., 1993). It is ‘low-active’ with short-chain PolyPs.

The exopolyphosphatase ppx of E. coli is a highly processive enzyme demonstrating the ability to recognize PolyPs of long chain lengths. Multiple PolyP binding sites were identified in distant portions of the enzyme and shown to be responsible for the enzyme polymer length recognition (Bolesch and Keasling, 2000a). In addition, two independently folded domains were identified. The genes for the N- and C-terminal domains were generated by using PCR and overexpressed in E. coli. The purified domain proteins were immobilized and used for the study of PolyP binding constants. The purified N- and C-terminal domains lacked exopolyphosphatase activity. However, the activity could be recovered in cases where the polypeptides were combined (Bolesch and Keasling, 2000a). The N-terminal domain contained a quasi-processive polyphosphatase active site belonging to the sugar kinase/actin/heat-shock protein hsp70 superfamily. The C-terminal domain contained a single polyphosphate-binding site and was responsible for nearly all affinity for PolyP. This domain was also found to confer a highly processive mode of action (Bolesch and Keasling, 2000a).

The exopolyphosphatase encoded by ppx from A. johnsonii is a monomeric protein of 55 kDa (Bonting et al., 1993b). The K_m value for a polyphosphate with an average chain length of 64 phosphate residues is 5.9 μM. The activity is maximal in the presence of 2.5 mM Mg$^{2+}$ and 0.1 mM K$^+$. No activity is observed in the absence of cations or in the presence of Mg$^{2+}$ or K$^+$ alone. The enzyme of A. johnsonii was active with PolyP$_3$ and PolyP$_4$ in the presence of 300 mM NH$_4$ and 10 mM Mg$^{2+}$, while no activity with PolyP$_3$ was observed in the presence of 0.1 mM K$^+$ and 2 mM Mg$^{2+}$.
The purified exopolyphosphatases from *E. coli* and *A. johnsonii* have low specific activities (1 \(\mu\)mol P\(_i\) per min per mg protein for the enzyme from *A. johnsonii* and 22 \(\mu\)mol P\(_i\) per min per mg of protein for the enzyme from *E. coli*) in comparison with the yeast enzymes (200–400 \(\mu\)mol P\(_i\) per min per mg of protein and more). They are low-active with PolyP\(_3\) and short-chain PolyPs and require K\(^+\) for the maximal activity. These properties represent the most appreciable difference between the majority of yeast and bacterial exopolyphosphatases. The low activity of bacterial exopolyphosphatases is probably explained by the fact that polyphosphate kinase in procaryotes is able both to synthesize and to hydrolyse PolyP (Kornberg *et al.*, 1999). The gene *ppx* encoding the major *E. coli* exopolyphosphatase has been cloned and sequenced (Akiyama *et al.*, 1993). The *ppx* genes were cloned and sequenced from *Pseudomonas aeruginosa* (Miyake *et al.*, 1999) and *Vibrio cholerae* (Ogawa *et al.*, 2000b). It should be noted that in *E. coli* (Akiyama *et al.*, 1993) and *Vibrio cholerae* (Ogawa *et al.*, 2000b) *ppkl* and *ppx* are in one operon, which suggests a co-regulation of their transcription activities, while in *Pseudomonas aeruginosa* the *ppx* is located in the opposite direction from the *ppk* gene and they do not constitute an operon (Miyake *et al.*, 1999).

Another enzyme encoded by the *gppA* gene and possessing exopolyphosphatase activity was purified from *E. coli* (Keasling *et al.*, 1993). This enzyme is a dimer with a monomer molecular mass of 50 kDa; \(K_m\) is 0.5 nM for PolyP\(_{500}\). It has a preference for long-chain polyPs, but one of its substrates is guanosine pentaphosphate (pppGpp), an important second messenger in bacteria.

One cannot exclude, however, that some bacteria possess other enzymes, which can split PolyPs. The acid phosphatase of *E. coli* was demonstrated to split long-chain PolyPs with a high specific activity (190 \(\mu\)mol P\(_i\) per min per mg of protein). The enzyme is active without divalent cations, but has the optimal pH of 2.5 (Dassa and Boquet, 1981). Two exopolyphosphatases have been detected in a cell-free extract of *Microlunatus phosphovorus* (Lichko *et al.*, 2002a), a bacterium isolated from activated sludge. One of them has a molecular mass of 93 kDa, pH optimum of 4.5, does not require K\(^+\) for its activity and is stimulated by divalent cations. The other exopolyphosphatase has a molecular mass of 55 kDa, pH optimum of 7.5, and displays its optimal activity in the presence of K\(^+\) and divalent cations. The content of the former exopolyphosphatase increased during the growth, while that of the latter varied only slightly (Lichko *et al.*, 2002a). Exopolyphosphatase activity was found in some methanotrophs (Troitsenko and Shishkina, 1990).

There are little data on exopolyphosphatase activity in Archae. In *Halobacterium salinarium*, it was very low (Andreeva *et al.*, 2000). In a crude extract of *Sulfolobus solfataricus* (Cardona *et al.*, 2002), the specific activity was 0.6 nmol P\(_i\) per min per mg of protein. This is much less than that found in bacteria. In this thermophilic archae, a functionally active gene of exopolyphosphatase was found, cloned and overexpressed. This gene encoded a protein of 417 amino acid residues (47.9 kDa). Purified recombinant exopolyphosphatase degraded long-chain PolyPs (700–800 residues) and needed Mn\(^{2+}\) for its activity. The deduced amino acid sequence of *S. solfataricus ppx* showed the highest (25–45\%) similarity to the sequences of bacterial *ppx* and possessed all of their conserved motifs. While *in vitro* the enzyme splits pppGpp, the authors believe that Archae do not seem to possess the genes responsible for the pppGpp synthesis and that the role of exopolyphosphatase *in vivo* is only PolyP hydrolysis (Cardona *et al.*, 2002).
As for eucaryotes, exopolyphosphatases of the yeast *Saccharomyces cerevisiae* have been most extensively studied. Exopolyphosphatase activity in a cell homogenate of *S. cerevisiae* is high (0.10–0.13 µmol Pi per min per mg of protein) (Andreeva et al., 1994; Wurst and Kornberg, 1994) when compared with bacteria (0.02–0.04 µmol Pi per min per mg of protein) (Akiyama et al., 1993; Bonting et al., 1993b). Exopolyphosphatases from the cell envelope (Andreeva et al., 1990; Andreeva and Okorokov, 1993), cytosol (Andreeva et al., 1996, 1998a, 2003), vacuolar sap (Andreeva et al., 1998b) and mitochondrial matrix (Lichko et al., 2000) of *S. cerevisiae* were purified and characterized.

Two polyphosphatases have been purified from an homogenate of *S. cerevisiae* (Wurst and Kornberg, 1994; Lorenz et al., 1994b). These enzymes have neutral pH optima, similar kinetic properties and substrate specificity, and require divalent cations, preferably Mg$^{2+}$ or Co$^{2+}$, for the maximal activity. Their activities on tripolyphosphate is nearly 1.5-fold higher than those on long-chain PolyPs. These enzymes are monomeric proteins, one of 45 kDa (Wurst and Kornberg, 1994) and the other of 28 kDa (Lorenz et al., 1994b). The properties of these enzymes are similar to those of cytosolic and cell-envelope exopolyphosphatases (Andreeva and Okorokov, 1993; Andreeva et al., 1996).

Exopolyphosphatase activities were found and characterized in the purified preparations of yeast cell nuclei (Lichko et al., 1996, 2002b) and mitochondrial membranes (Lichko et al., 1998). The presence of specific exopolyphosphatases in these sub-cellular fractions was confirmed by their insensitivity to inhibitors of other phosphohydrolases occurring in the cell compartments and differences in pH optima.

All studied exopolyphosphatases of *S. cerevisiae* exhibited several common features (Andreeva et al., 1990, 1998 a,b, 2001; Andreeva and Okorokov, 1993; Lichko et al., 1996, 1998, 2000, 2002b, 2003a,b). They hydrolysed PolyPs of various chain lengths with release of Pi, and failed to hydrolyse *p*-nitrophenylphosphate (the substrate of phosphatases with a broad spectrum of action), ATP and other nucleoside triphosphates, and PP$_i$. The enzyme–substrate affinity for all exopolyphosphatases under study was considerably higher with PolyPs of greater chain lengths (Table 6.3). The sensitivity to a number of inhibitors was also similar. They were insensitive to molybdate, a commonly used phosphohydrolase inhibitor, and fluoride, the inhibitor of pyrophosphatases. They were not inhibited with azide, oligomycin, orthovanadate, *N*,*N*′-dicyclohexylcarbodiimide, diethylstilbestrol and nitrate – the known inhibitors of ATPases of different types. SH reagents such as *N*-ethylmaleimide and iodacetamide had little or no effect on exopolyphosphatase activities, showing that the

Table 6.3	The Michaelis constants (µmol) of purified exopolyphosphatases of different cell compartments of *S. cerevisiae* (Andreeva and Okorokov, 1993; Andreeva et al., 1998a,b, 2001, 2004; Lichko et al., 1996, 1998, 2000).				
Substrate	Cell envelope, 40 kDa enzyme	40 kDa enzyme	High-molecular-weight enzyme	Vacuolar sap	Mitochondrial matrix
PolyP$_{15}$	15	11	75	93	18
PolyP$_{208}$	0.9	1.2	3.5	2.4	0.25
Enzymes of polyphosphate degradation

Enzyme active centers contained no SH groups necessary for the activity. Insensitivity of all exopolyphosphatases types to orthovanadate suggests their inability to form a phosphor-rylated intermediate during the PolyP hydrolysis reaction.

It should be noted that, in spite of the solubilities of most yeast exopolyphosphatases, the detergent ‘Triton X-100’ was the best stabilizer of these enzymes during purification and storage (Andreeva et al., 1990; Andreeva et al., 1998a,b).

The common inhibitor for all exopolyphosphatases was heparin, which suppressed the activities of both sub-cellular preparations and purified enzymes as a competitive inhibitor (Table 6.4.) (Andreeva et al., 1994).

Exopolyphosphatases of \textit{S. cerevisiae}, except for that from the mitochondrial membrane, were stimulated by divalent metal cations (Table 6.5). The degree of stimulation was different and depended on the cation and its concentration.

Monovalent metal cations including K$^+$ had little or no effect on the yeast exopolyphosphatases when compared with bacterial enzymes, which exhibited a strong dependence on K$^+$ for their activities (Lichko et al., 2003a).

Exopolyphosphatases of \textit{S. cerevisiae} were optimal at neutral pH, although the profiles of pH dependence had their own peculiarities for each enzyme. While the cell envelope and cytosolic exopolyphosphatases were able to hydrolyse substrates at acid and alkaline pH,

Table 6.4 Effect of some reagents on exopolyphosphatases (exopolyPase) of various cell compartments of \textit{S. cerevisiae} (Andreeva and Okorokov, 1993; Andreeva et al., 1998a,b, 2001, 2004; Lichko et al., 1996, 1998, 2000).

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>Activity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Without effectora</td>
</tr>
<tr>
<td>40 kDa exopolyPase of cell envelopec</td>
<td>100 (220)</td>
</tr>
<tr>
<td>40 kDa exopolyPase of cytosold</td>
<td>100 (320)</td>
</tr>
<tr>
<td>High-molecular-weight exopolyphosphatase of cytosolc</td>
<td>100 (135)</td>
</tr>
<tr>
<td>ExopolyPase of mitochondrial matrixc</td>
<td>100 (2)</td>
</tr>
<tr>
<td>ExopolyPase of vacular sapd</td>
<td>100 (60)</td>
</tr>
<tr>
<td>ExopolyPase of mitochondrial membraned</td>
<td>100 (0.085)</td>
</tr>
<tr>
<td>ExopolyPase of nucleusd</td>
<td>100 (0.055)</td>
</tr>
</tbody>
</table>

a The values of specific activities (U mg protein$^{-1}$) corresponding to 100 % are given in brackets. PolyP$_{15}$ and 2.5 mM Mg$^{2+}$ were used.

b Antibodies were obtained against purified cell-envelope exopolyphosphatase.

c Purified enzymes.

d The exopolyphosphatase activity of isolated sub-cellular fractions is shown.
though to a lesser extent, the exopolyphosphatases of vacuoles, nuclei and mitochondria had sharper pH profiles.

Other properties of exopolyphosphatases from separate cell compartments of S. cerevisiae differed essentially from each other. At least 45–60 % of the total exopolyphosphatase activity of the yeast cell is localized in the cytosol (Andreeva et al., 1994, 2001). Cytosol and the cell envelope possess very similar forms of the enzyme (Andreeva et al., 1990, 1996). This is a monomeric protein of 40 kDa. Antibodies obtained against the purified cell envelope exopolyphosphatase inhibited only the enzyme from the cell envelope and cytosol, but were inefficient towards other exopolyphosphatases of the yeast cell (Table 6.5). Based on substrate specificity, 40 kDa exopolyphosphatases of the cytosol and cell envelope should be termed triphosphatases, since their activity with PolyP3 is 1.5-fold higher than with the long-chain PolyPs. These can hydrolyse adenosine- and guanosine-tetraphosphates. The specific activity with PolyPs of different degrees of polymerization, with the exception of PolyP3, did not depend on the PolyP chain length (Table 6.6). This exopolyphosphatase was essentially inactive without divalent metal cations (Table 6.5). A complex of PolyP and Mg\(^{2+}\) in the ratio of 1:1 was a substrate of the reaction with PolyP3 (Andreeva et al., 1998a; Kulakovskaya et al., 1999) and, probably, with high-molecular-weight PolyPs. An unusual property of this enzyme, which is lacking in other exopolyphosphatases, is stimulation with EDTA: 1 mM of this complexon in the presence of 2.5 mM Mg\(^{2+}\) increased the enzyme activity 1.5-fold (Table 6.4.). This effect apparently resulted from the presence in the enzyme molecule of a regulatory centre for binding divalent metal cations. Other yeast exopolyphosphatases are inhibited by EDTA, in accordance with its ability to bind divalent cations, or are not affected by this complexon. The cytosol of S. cerevisiae posesses an additional high-molecular-weight exopolyphosphatase (Andreeva et al., 2001, 2004), whose properties will be discussed below.

The exopolyphosphatase purified from the mitochondrial matrix of S. cerevisiae has the same molecular mass of ~ 40 kDa, substrate specificity (Table 6.6), and the requirement

<table>
<thead>
<tr>
<th>Source of enzyme</th>
<th>Degree of stimulation*</th>
<th>2.5 mM Mg(^{2+})</th>
<th>0.1 mM Co(^{2+})</th>
<th>0.1 mM Zn(^{2+})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell envelope*b</td>
<td>10</td>
<td>14</td>
<td>7.5</td>
<td></td>
</tr>
<tr>
<td>Cytosol, 40 kDa enzyme*b</td>
<td>39</td>
<td>66</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Mitochondrial matrix*b</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Cytosol, high-molecular-weight enzyme*b</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Vacuolar sap*b</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Mitochondrial membrane*c</td>
<td>0.7</td>
<td>0.7</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>Nucleus*c</td>
<td>1.8</td>
<td>3.2</td>
<td>1.7</td>
<td></td>
</tr>
</tbody>
</table>

a Activity was measured with PolyP\(_{15}\) used as the substrate and the values (expressed as ‘n-fold’) were related to the activity observed in the absence of exogenous cations.

b Purified enzymes.

c The exopolyphosphatase activities of isolated sub-cellular fractions is shown.

<table>
<thead>
<tr>
<th>Compartment</th>
<th>PolyP$_3$</th>
<th>PolyP$_9$</th>
<th>PolyP$_{15}$</th>
<th>PolyP$_{208}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell envelopeb</td>
<td>180</td>
<td>120</td>
<td>110</td>
<td>100</td>
</tr>
<tr>
<td>Cytosol, 40 kDa enzymeb</td>
<td>160</td>
<td>120</td>
<td>110</td>
<td>100</td>
</tr>
<tr>
<td>Mitochondrial matrixb</td>
<td>210</td>
<td>140</td>
<td>110</td>
<td>100</td>
</tr>
<tr>
<td>Cytosol, high-molecular-weight enzymeb</td>
<td>12</td>
<td>44</td>
<td>90</td>
<td>100</td>
</tr>
<tr>
<td>Vacuolar sapb</td>
<td>7</td>
<td>21</td>
<td>86</td>
<td>100</td>
</tr>
<tr>
<td>Mitochondrial membranec</td>
<td>36</td>
<td>41</td>
<td>77</td>
<td>100</td>
</tr>
</tbody>
</table>

a Specific activities were the same as those shown in Table 6.4.

b Purified enzyme preparations.

c Exopolyphosphatase activity in isolated sub-cellular fractions.

for divalent cations (Table 6.5). This enzyme, however, has a higher affinity to long-chain PolyPs (Table 6.3), is less sensitive to antibodies against cell-envelope exopolyphosphatase, and is not activated by EDTA (Table 6.4).

Quite a different form of exopolyphosphatase was purified from the vacuolar sap of *S. cerevisiae* (Andreeva *et al.*, 1998b). Its molecular mass determined by gel filtration was ~ 245 kDa. This exopolyphosphatase hydrolysed PolyP$_3$ only slightly, and its specific activity increased with the increase in PolyP chain length (Table 6.6). It was unable to hydrolyse adenosine- and guanosine-tetrrophosphates and was insensitive to antibodies inhibiting the low-molecular-mass exopolyPase of the cytosol (Table 6.4). This enzyme was stimulated by divalent metal cations to a much lesser extent than 40 kDa exopolyphosphatase (Table 6.5) and was inhibited by EDTA (Table 6.4). The inhibitory effect of EDTA is explained by the binding of Co$^{2+}$, which is the best activator of the vacuolar exopolyphosphatase at 0.1 mM.

The exopolyphosphatase of a membrane fraction of a these organelles resembles the soluble form in the properties studied (Andreeva *et al.*, 1993).

A specific exopolyphosphatase was tightly bound to the mitochondrial membranes of *S. cerevisiae* (Lichko *et al.*, 1998). This was the first known example of membrane-bound exopolyphosphatases. It was characterized by its higher activity with PolyPs of greater chain lengths (Table 6.6). Under gel filtration of a solubilized preparation of mitochondrial membranes, this activity was shown to be associated with proteins of 76 and 140 kDa. A special feature of this exopolyphosphatase was its inhibition by divalent metal cations (Table 6.5).

The exopolyphosphatase found in the nuclei of *S. cerevisiae* was stimulated 2–3-fold by divalent metal cations (Table 6.5) and was insensitive to EDTA and antibodies against cell-envelope exopolyphosphatase (Table 6.4).

Under phosphate overplus, i.e. a transfer of yeast cells from Pi-limited to complete media, a new exopolyphosphatase was observed in the cytosol of *S. cerevisiae*, demonstrating a sufficient difference from the 40 kDa exopolyphosphatase (Andreeva *et al.*, 2001, 2004). It appears as a complex of ~ 830 kDa, probably comprising PolyPs and other proteins. The
activity of high-molecular-weight exopolyphosphatase under phosphate overplus gradually increased up to 10-fold in the logarithmic phase and then remained stable, while the activity of the 40 kDa exopolyphosphatase decreased 1.3-fold in the same growth phase and dropped almost 10-fold in the stationary growth phase. The high-molecular-weight exopolyphosphatase of cytosol was more active with PolyPs of longer chain lengths. Its activity with PolyP3 was only 13 % of that with PolyP208 (Andreeva et al., 2001, 2004). The antibodies against 40 kDa exopolyphosphatase had no effect on the high-molecular-weight ones. The stimulation of activity by divalent cations was less in the case of high-molecular-weight exopolyphosphatase when compared with the 40 kDa form (Table 6.4). High-molecular-weight exopolyphosphatase of the cytosol also differed from exopolyphosphatasases of the cell envelope (Andreeva and Okorokov, 1993), nuclei (Lichko et al., 1996) and mitochondria (Lichko et al., 1998), but was similar to the vacuolar exopolyphosphatase of the same yeast (Andreeva et al., 1999b). It should be noted that, despite the simultaneousness of PolyP accumulation and increase in high-molecular-weight exopolyphosphatase activity, no direct interrelation has been found between these processes. Cycloheximide blocked the increase in high-molecular-weight exopolyphosphatase activity but had no effect on PolyP accumulation.

The only known gene encoding the yeast exopolyphosphatase is the PPX1 gene, which was cloned and sequenced (Wurst et al., 1995). The PPX1 gene belongs to the PPase C family and has no sufficient similarity to the bacterial ppx gene (see http://www.expasy.org). Exopolyphosphatase PPX1, a protein of 396 amino acids with a molecular mass of ~45 kDa, was purified from a homogenate of S. cerevisiae (Wurst et al., 1995). A PPX1-deficient strain was obtained using the gene elimination method (Wurst et al., 1995). Surprisingly, this had an exopolyphosphatase activity of ~50 % of the parent strain level. Thus, the existence of other genes, encoding exopolyphosphatasases in the yeast genome, was proposed (Wurst et al., 1995).

Considerable changes in exopolyphosphatase spectrum were observed on PPX1 elimination (Figure 6.6). In the PPX1-deficient strain, 40 kDa exopolyphosphatasases were not observed in the cytosol, cell envelope and mitochondrial matrix (Lichko et al., 2002b, 2003a). Although PPX1 was absent in the cytosol of the mutant, exopolyphosphatase activity in this compartment decreased only twofold. This was explained by a concurrent fivefold increase in the activity of high-molecular-weight exopolyphosphatase in this compartment, whose properties were the same as those of the high-molecular-weight exopolyphosphatase which appeared in the cytosol under phosphate overplus. No exopolyphosphatase activity was found in a cell-envelope fraction of the PPX1 null mutant.

Inactivation of PPX1 did not result in any considerable changes in the content and properties of vacuolar, nuclear and membrane-bound mitochondrial exopolyphosphatasases when compared with the parent strain of S. cerevisiae (Lichko et al., 2002b, 2003b). This allows us to conclude that the 40 kDa exopolyphosphatases of the cytosol, cell envelope and the mitochondrial matrix of S. cerevisiae are encoded by the same PPX1 gene, and the cytosolic high-molecular-weight enzyme and those of vacuoles, nuclei and mitochondrial membranes are encoded by other genes (Lichko et al., 2002b, 2003a,b).

Distinction of the soluble mitochondrial exopolyphosphatase from those localized in the yeast cytosol and cell envelope could be explained by post-translational modification of this enzyme.

Under two different statuses of the yeast cell, Pᵢ overplus and PPX1 disruption, a drastic increase in high-molecular-weight exopolyphosphatase activity and disappearance
of the 40 kDa exopolyphosphatase were observed in the yeast cytosol. This suggests an existence of a joint mechanism of regulation of both enzymes. These are likely to be involved in a co-regulation of the levels of some PolyP fractions and nucleoside polyphosphates such as adenosine-tetraphosphate. A search of such mechanisms is important to elucidate the involvement of exopolyphosphatases in regulation of yeast cell metabolism.

The comparison of exopolyphosphatases from different cell compartments of the yeast *S. cerevisiae* suggests that they are a typical example of ‘compartment-specific’ enzymes. The latter differ from each other in their physico-chemical properties, substrate specificity, response to changing cultivation conditions, and presumably, in the functions and ways of regulation. The compartment-specificity of exopolyphosphatases should be taken into account in the study of PolyP metabolism in the eukaryotic cell.

The cloning, overexpression, purification and characterization of the exopolyphosphatase (LmPPX) from Protozoa *Leishmania major* have been reported (Rodrigues et al., 2002a). The gene sequence shows a similarity with *PPX1*. The product of this gene (LmPPX) has 388 amino acids and a molecular mass of 48 kDa. Heterologous expression of LmPPX in *Escherichia coli* produced a functional enzyme that was similar to the
Enzymes of polyphosphate biosynthesis and degradation

yeast exopolyphosphatase with respect to its Mg$^{2+}$ requirement, optimal pH and sensitivity to cations, amino acids and heparin (Rodrigues et al., 2002). In contrast to the yeast enzyme and other known exopolyphosphatasases, it hydrolysed PolyP$_3$ with a higher rate and affinity. This processive enzyme did not hydrolyse pyrophosphate, ATP or p-nitrophenylphosphate. Immunofluorescence microscopy using affinity-purified antibodies against the recombinant enzyme indicated its acidocalcisomal and cytosolic localization (Rodrigues et al., 2002).

Exopolyphosphatases purified from Neurospora crassa (Umnov et al., 1974) and Endomyces magnusii (Afanas’eva and Kulaev, 1973) are close to the yeast cytosol exopolyphosphatase through its molecular mass and divalent cations requirements. The fact that it actually did not hydrolyse PolyP$_3$ may be due to its low affinity to this substrate, which was used in a 10-fold lower concentration than K_m for the yeast enzyme (Umnov et al., 1974). Two other exopolyphosphatase activities were observed in the ‘slime’ variant of N. crassa which cannot synthesize cell walls (Trilisenko et al., 1985a,b). One of these was K$^+$- and Mg$^{2+}$-dependent, hydrolysing high-molecular-weight polyPs, while the other was K$^+$- and Mg$^{2+}$-independent, hydrolysing low-molecular-weight polyPs. The study of a number of exopolyphosphatases from the lower eucaryotes is important to clarify the PolyP functions in each individual compartment of these microorganisms.

As regards animals, the first exopolyphosphatases were purified from the marine sponge Tethya lyncurum (Lorenz et al., 1995). Two exopolyphosphatases were identified in this simple metazoan. Exopolyphosphatase I had a molecular mass of 45 kDa, a pH optimum of 5.0, and did not required divalent cations for its activity, while exopolyphosphatase II had a molecular mass of 70 kDa, a pH optimum of 7.5, and displayed optimal activity in the presence of Mg$^{2+}$ (Lorenz et al., 1995).

Exopolyphosphatase activity is also present in human osteoblasts (Leyhausen et al., 1998). The specific activity of the enzyme in osteoblasts was much higher than those in other mammalian cells and tissues tested (Schröder et al., 2000) (Table 6.7). More than 50% of the exopolyphosphatase activity in osteoblast cells was ‘membrane-bound’. Exopolyphosphatase activity has also been found extracellularly, e.g. in synovial fluid (Schöder et al., 1999), as well as in human blood plasma and serum (Schröder et al., 1999, 2000) (Table 6.7).

<table>
<thead>
<tr>
<th>Table 6.7 Exopolyphosphatase activities with PolyP$_{35}$ as the substrate in different cells, tissues and extracellular fluids from mammals (Schröder et al., 2000).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell/tissue</td>
</tr>
<tr>
<td>Rat liver</td>
</tr>
<tr>
<td>Rat brain</td>
</tr>
<tr>
<td>Human plasma</td>
</tr>
<tr>
<td>Human serum</td>
</tr>
<tr>
<td>Human osteoblasts</td>
</tr>
<tr>
<td>Human HL-60 cells</td>
</tr>
<tr>
<td>Human peripheral blood mononuclear cells</td>
</tr>
</tbody>
</table>
It was demonstrated that the intestinal isoform of alkaline phosphatase from calf was able to degrade PolyPs with a wide range of chain lengths, in addition to PPi (Lorenz and Schröder, 2001). The enzyme splits P_i from PolyP in a processive manner. The pH optimum is in the alkaline range. Divalent cations are not required for catalytic activity but instead inhibit PolyP degradation. The rate of hydrolysis of short-chain PolyPs is comparable with that of the standard alkaline phosphatase substrate, i.e. \(p \)-nitrophenyl phosphate. The specific activity of the enzyme decreases with increasing chain length of the polymer, both in the alkaline and neutral pH ranges. The \(K_m \) of the enzyme also decreases with increasing chain length. The mammalian tissue non-specific isoform of alkaline phosphatase was not able to hydrolyse PolyP under the conditions applied, while the placental-type alkaline phosphatase displayed PolyP-degrading activity (Lorenz and Schröder, 2001).

Therefore, the exopolyphosphatases are quite different both in various organisms and in different cell compartments of the same organism. This suggests their possible different functions in cells.

6.2.4 Adenosine–Tetrathosphate Phosphohydrolase (EC 3.6.1.14)

\[
\text{adenosine–5'–tetrathosphate} + \text{H}_2\text{O} \rightarrow \text{ATP} + \text{phosphate} \quad (6.13)
\]

In yeast, adenosine–tetraphosphate phosphohydrolase and guanosine–tetraphosphate phosphohydrolase activities are an inherent property of exopolyphosphatase PPX1. It was demonstrated both with the cytosol preparations, where this enzyme is localized (Kulakovskaya \textit{et al.}, 1997), and with a purified PPX1 preparation (Guranowski \textit{et al.}, 1998). Exopolyphosphatase PPX1 of the cytosol of \textit{S. cerevisiae} is able to hydrolyse adenosine–5’–tetraphosphate and guanosine–5’–tetraphosphate about twice more actively than PolyP \textsubscript{15}, with an apparent \(K_m \) value of 80–100 \(\mu \text{M} \) (Kulakovskaya \textit{et al.}, 1997). Thus, in yeast PPX1 may link the metabolism of PolyP and some nucleoside polyphosphates.

The enzyme splitting both adenosine–tetrathosphate and guanosine–tetrathosphate was purified to homogeneity from yellow lupin seeds (Guranowski \textit{et al.}, 1997). The polypeptide of \(\sim 25 \) kDa catalysed the hydrolysis of nucleoside–5’–tetraphosphate to nucleoside triphosphate and P\textsubscript{i}, and hydrolysed PolyP\textsubscript{3}, but neither pyrophosphate nor PolyP\textsubscript{4}. The divalent carions Mg2+, Co2+, Ni2+ or Mn2+ were required for the reaction.

The enzyme with adenosine–tetrathosphate activity was obtained earlier from rabbit muscle (Small and Cooper, 1966). This enzyme had an effect on inosine tetraphosphate and triphosphophosphate but showed little or no activity with other nucleotides or PolyPs.

6.2.5 Triphosphatase (Triplyphosphatase, EC 3.6.1.25)

Only earlier data (Meyerhof \textit{et al.}, 1953; Kornberg, 1957b) are available for trimetaphosphate hydrolase (EC 3.6.1.2) catalysing the following reaction:

\[
\text{cyclotriphosphate} + \text{H}_2\text{O} \rightarrow \text{PolyP}_3 \quad (6.14)
\]
Many enzymes, however, were demonstrated to catalyse the reaction:

\[
\text{PolyP}_3 + \text{H}_2\text{O} \rightarrow \text{Pyrophosphate} + \text{P}_i \quad (6.15)
\]

First, there are inorganic pyrophosphatases (EC 3.6.1.1) which can hydrolyse tri- and tetraphosphate (Baykov et al., 1999). The ability of some pyrophosphatases to split these substrates depends on pH and divalent cations (Baykov et al., 1999). The most effective hydrolysis of low-molecular-weight PolyPs was observed for inorganic pyrophosphatase isolated from the archaeon *Metanotrix soehgenii*. This hydrolyses PolyP$_3$ and PolyP$_4$ for 44 and 8%, respectively, of the PP$_i$ hydrolysis rate (Jetten et al., 1992) and may therefore be involved in their metabolism.

Secondly, adenosylmethionine synthetase, in addition to synthetase reaction, catalyses triphosphatase reactions stimulated by adenosylmethionine. Both of the enzymatic activities of the enzyme, which has been purified to homogeneity from *E. coli*, require a divalent metal ion and are markedly stimulated by certain monovalent cations (Markham et al., 1980). Triphosphatase activity is also associated with S-adenosylmethionine synthetase isozymes from rat liver (Shimizu et al., 1986).

Thirdly, some RNA triphosphatases possess a weak triphosphatase activity, and PolyP$_3$ is a potential competitive inhibitor (Yu et al., 1997; Gong and Shuman, 2002).

Specific triphosphatase was purified from *Thermobacterium thermoautotrophicum* (Van Alebeek et al., 1994). The enzyme of 22 kDa hydrolyses triphosphates five times more actively than PolyP$_{15}$.

Tryptophosphate was purified from *Neurospora crassa*. This had a molecular mass of 50 kDa, and its activity strongly depended on divalent metal cations (Kulaev et al., 1972a,c; Umnov et al., 1974; Egorov and Kulaev, 1976).

In *S. cerevisiae*, triphosphatase activity is an inherent property of exopolyphosphatases of the cell envelope, cytosol and mitochondrial matrix (Andreeva and Okorokov, 1993; Andreeva et al., 1996; Lichko et al., 2000), which are encoded by the PPX1 gene. In *Leishmania major*, exopolyphosphatase is also responsible for PolyP$_3$ degradation (Rodrigues et al., 2002a).

The putative ability of some triphosphatases from microorganisms to split long-chain PolyPs under suitable conditions needs further investigation.

6.2.6 Endopolyphosphatase (Polyphosphate Depolymerase, EC 3.6.1.10)

Endopolyphosphatase splits long-chain PolyP molecules into shorter ones. The product contains four to five phosphate residues.

\[
\text{PolyP}_n + \text{H}_2\text{O} \rightarrow \text{Oligopolyphosphates} \quad (6.16)
\]

Malmgren (1952) and Mattenheimer (1956) were the first to observe this reaction in yeast and fungi. Endopolyphosphatase activity was investigated in the fungi *Aspergillus niger* (Malmgren, 1952) and *Neurospora crassa* (Kritsky et al., 1972; Kulaev et al., 1972a–c).

This enzyme was purified from the yeast (Kumble and Kornberg, 1996). It is a dimer of 35 kDa sub-units, and its activity requires divalent metal cations. Mn$^{2+}$ is more active.
than Mg$^{2+}$, with an optimum concentration of about 2.5 mM. The enzyme hydrolyses PolyPs to shorter chain lengths and even to tripolyphosphate. These authors suggest the endopolyphosphatase to be localized in vacuoles (Kumble and Kornberg, 1996). The activity has been partially purified from rat and bovine brain, where its abundance is about 10 times higher than in other tissues but much less than in yeast (Kumble and Kornberg, 1996). Endopolyphosphatase has escaped detection in procaryotes (Kumble and Kornberg, 1996). The presence of this enzyme in eucaryotes is supposed to be associated with the redistribution of PolyP pools in different compartments and PolyP transport between the compartments.

6.2.7 PolyP:AMP Phosphotransferase

The most well-known databases (http://www.expasy.org, and http://www.chem.qmul.ac.uk/iubmb/enzyme) have no mention of this enzyme.

The reaction was found first in *Corynebacterium xerosis* (Dirheimer and Ebel, 1965):

\[
\text{PolyP}_n + \text{AMP} \rightleftharpoons \text{PolyP}_{n-1} + \text{ADP}
\] (6.17)

PolyP:AMP phosphotransferase was partly purified from *A. jonsonii* strain 210A (Bonting *et al.*, 1991). This had a molecular mass of 55 kDa. The kinetic studies showed apparent K_m values of 0.26 mM for AMP and 0.8 μM for PolyP$_{35}$. The highest activity was found with PolyPs of 18 to 44 phosphate residues. The PolyPs were degraded completely by a processive mechanism. No activity was revealed with pyrophosphate, PolyP$_3$ and PolyP$_4$.

Some authors believed that this enzyme, in concert with adenylate kinase, is responsible for utilization of the greater part of PolyP in *A. johnsonii* (Kortstee and van Aeen, 1999; Kortstee *et al.*, 2000):

\[
\text{PolyP}_n + \text{AMP} \rightleftharpoons \text{PolyP}_{n-1} + \text{ADP}
\] (6.18)

\[
2\text{ADP} \rightleftharpoons \text{ATP} + \text{AMP}
\] (6.19)

The resulting reaction is as follows:

\[
\text{PolyP}_n + \text{ADP} \rightleftharpoons \text{PolyP}_{n-1} + \text{ATP}
\] (6.20)

This pathway retains the phosphoanhydride-bound energy of PolyP. The enzymes from *A. johnsonii* were used to create an ATP-regenerating system (Resnick and Zehnder, 2000).

The significance of PolyP:AMP phosphotransferase in different bacteria is still in question. Therefore, in *E. coli* the ADP formation from PolyP by chain shortening was explained by a joint action of polyphosphate kinase and adenylate kinase, which formed a complex with the PolyP (Ishige and Noguchi, 2000):

\[
\text{PolyP}_n + \text{ADP} \rightleftharpoons \text{PolyP}_{n-1} + \text{ATP}
\] (6.21)

\[
\text{AMP} + \text{ATP} \rightleftharpoons \text{ADP}
\] (6.22)

This conclusion was grounded on the observation that over-expression of polyphosphate kinase in *E. coli* caused a sharp increase of the PolyP:AMP phosphotransferase activity (Ishige and Noguchi, 2000). Moreover, *in vitro* PolyP:AMP phosphotransferase activity
Enzymes of polyphosphate biosynthesis and degradation

Table 6.8 The occurrence of PolyP-dependent enzymes in prokaryotes and eukaryotes.

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>Procaryotes</th>
<th>Eucaryotes</th>
</tr>
</thead>
<tbody>
<tr>
<td>PolyP kinase</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>1,3-Diphosphoglycerate–PolyP phosphotransferase</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Dolichyl-PP:PolyP phosphotransferase</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>PolyP-glucose phosphotransferase</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>Exopolyphosphatase</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Endopolyphosphatase</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>PolyP-dependent NAD kinase</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>PolyP:AMP phosphotransferase</td>
<td>+</td>
<td>−</td>
</tr>
</tbody>
</table>

required equimolar concentrations of polyphosphate kinase and adenylate kinase (Ishige and Noguchi, 2000).

In Pseudomonas aeruginosa, massive PolyP:AMP phosphotransferase and PolyP:ADP phosphotransferase activities were found (Ishige and Noguchi, 2001). Partially purified PolyP:ADP phosphotransferase was independent of polyphosphate kinase encoded by the ppk1 gene and could act as a PolyP-dependent nucleoside diphosphate kinase, which preferred GDP as a phosphate acceptor (Ishige and Noguchi, 2001). It has been demonstrated that PolyP:AMP phosphotransferase activity in this bacterium originated mainly from the combined action of PolyP:ADP phosphotransferase and adenylate kinase (Ishige and Noguchi, 2001). The PolyP:ADP phosphotransferase activity is probably due to a new polyphosphate

\[
\text{ATP (NTP)} \rightarrow 1 \rightarrow \text{PolyP} \rightarrow 2 \rightarrow \text{Glucose-6-phosphate} \rightarrow 3 \rightarrow \text{NADP} \rightarrow 5 \rightarrow \text{ADP} \rightarrow 4
\]

![Figure 6.7](image-url) Enzymes coupling metabolism of PolyPs and nucleoside phosphates in bacteria: (1) polyphosphate kinases; (2) glucokinas; (3) NAD kinases; (4) PolyP:AMP phosphotransferase; (5) adenylate kinase.
Enzymes of polyphosphate degradation

Enzymes of polyphosphate degradation

Enzymes of polyphosphate degradation

Thus, in *E. coli* and *P. aeruginosa* the PolyP:AMP phosphotransferase activity is a result of the joint action of adenylate kinase and polyphosphate kinases. The occurrence of PolyP:AMP phosphotransferase in the above bacteria has, however, no genetic confirmation. No such activity was observed in eucaryotes, in line with the absence of polyphosphate kinase.

The analysis of the properties of PolyP-dependent enzymes has offered some interesting observations. The sets of PolyP-dependent enzymes in procaryotes and eucaryotes show a significant difference. Some enzymes are found in only procaryotes or in eucaryotes (Table 6.8). Even the exopolyphosphatases of procaryotes and eucaryotes belong to different protein families. Tight interrelations between PolyPs and the enzymes metabolizing nucleoside compounds are most demonstrated in procaryotes (Figure 6.7), whereas in eucaryotes these interrelations are weaker. Nevertheless, some reactions linking PolyPs and nucleoside–polyphosphate pools are also observed (Booth and Guidotti, 1995; Kulkakovskaya *et al.*, 1997; Guranowski *et al.*, 1998).

It should be noted that many PolyP-dependent enzymes (polyphosphate kinase, exopolyphosphatases, PolyP glucokinase and NAD kinase) are multifunctional and can catalyse reactions both with PolyPs and nucleotide triphosphates. Some PolyP-dependent enzymes, especially exopolyphosphatases, provide excellent examples of cell-compartment specific enzymes. Cell-compartment specificity is a characteristic feature of eucaryotic ATPases (Nelson, 1992) and pyrophosphatases (Baltscheffsky and Baltscheffsky, 1992; Davies *et al.*, 1997; Baykov *et al.*, 1999). This means that the same reaction may be performed in cell compartments by specific enzymes, which differ in their properties, encoding genes and functions. All of the above properties of PolyP-dependent enzymes suggest their important role in the regulation of living cell functions as a whole.
7

THE FUNCTIONS OF POLYPHOSPHATES AND POLYPHOSPHATE-DEPENDENT ENZYMES

7.1 Phosphate Reserve

Many authors have adhered to the view that PolyPs are primarily a reserve of phosphate, on which the cells of microorganisms are able to draw on at any time, but especially during the periods of phosphorus starvation (Mudd et al., 1958; Harold, 1966; Kulaev and Vagabov, 1983; Wood and Clark, 1988; Kornberg, 1995). This function of PolyPs is confirmed by a strong dependence of PolyP content in the cells of microorganisms on the phosphate content in the medium (see Chapter 8).

In the opinion of Harold (1966), PolyPs, being polymers, constitute highly convenient compounds for the storage of large amounts of Pi in the cell, since the accumulation of polymeric phosphate molecules has little effect on osmotic pressure within the cells and, on the other hand, serves to maintain a constant level of important metabolites such as free Pi and ATP. Since phosphorus is an element of vital importance, which organisms are absolutely incapable to live without, in the course of evolution microorganisms have developed the ability to store surplus phosphate in the form of PolyPs. It has been shown more than once that many microorganisms, both prokaryotes and eukaryotes, may occasionally accumulate sufficient amounts of PolyPs, thus enabling them to grow on a phosphorus-free medium (Langen and Liss, 1958a,b; Liss and Langen, 1962; Harold, 1966; Kulaev and Vagabov, 1983).

PolyPs are the principal regulators of the intracellular level of Pi in microorganisms. In all cases of rapid Pi uptake by cells, when the pathways of its utilization are limited, PolyPs are accumulated and the intracellular concentration of Pi remains low (Harold, 1966;
Functions of polyphosphate and polyphosphate-dependent enzymes

Kaltwasser, 1962; Lichko et al., 1982; Kulaev and Vagabov, 1983). The same effect is observed when free Pi accumulates in a cell as a result of degradation processes, especially the degradation of nucleic acids (Harold, 1962b). Phosphate overplus (hypercompensation effect) is observed for both prokaryotes and eukaryotes. Phosphorus starvation results in de-repression of phosphatases localized on cell surfaces and of phosphate uptake systems (Harold, 1966; Nesmeyanova et al., 1974a,b, 1975a). Both processes, the cleavage of organic phosphorus compounds and Pi uptake from the medium, may increase the Pi level when phosphorus-starved cells are placed in a medium containing this element. In order to maintain a sensibly constant level of Pi, it is converted into PolyP (Ehrenberg, 1960; Harold, 1962b, 1966).

The importance of maintaining a constant low level of Pi in cells is relevant on account of several considerations. First, Pi concentration is, in turn, a powerful controlling factor of biochemical processes. Secondly, accumulation of any significant amounts of Pi in cells would result in a considerable change of its osmotic pressure and pH. It is also possible that free Pi in high concentrations is toxic for cells. One example of such toxicity was observed during Pi accumulation by the halophilic archae Halobacterium salinarium (Smirnov et al., 2002a,b). This archaeon is able to take up about 90% of Pi from culture medium but unable to synthesize PolyPs in large amounts. As a result, massive Pi uptake leads to an accumulation of magnesium phosphate in cells, a change in cell morphology, and the death of some part of the population. In fact, it is likely that the large amounts of PolyPs, which are accumulated in cells of microorganisms under certain culture conditions, are a detoxification product of Pi entering the cells. Some features of the PolyP function as a Pi reserve in prokaryotes and eukaryotes will be described below.

7.1.1 In Prokaryotes

Many bacteria are able to accumulate PolyPs if the Pi content in the medium is high. In Acinetobacter johnsonii, these polymers make up to 30% of dry biomass (Deinema et al., 1985). Large amounts of PolyPs are characteristic of the bacteria from wastewaters with a high phosphate content. A. johnsonii (Deinema et al., 1985; Kortstee et al., 1994, 2000), Microlunatus phosphovorus (Nakamura et al., 1995), Microthrix parvicella (Erhardt et al., 1997) and Rhodocyclus sp. (Keasling et al., 2000), isolated from activated sludge, are examples of such bacteria. The biotechnology of ‘enhanced biological phosphate removal’ (EBPR) has become a field of rapid development. This is based on the ability of bacterial communities of activated sludge to remove Pi from waste and to accumulate PolyPs in sludge biomass. Many reviews describe the biochemical and biotechnological aspects of this process (Kortstee et al., 1994, 2000; Van Loosdrecht et al., 1997; Ohtake et al., 1999; Keasling et al., 2000; Mino, 2000; McGrath and Quinn, 2003). We will return to this topic in Chapter 9.

In E. coli, the level of PolyP drops drastically under phosphate starvation, and the subsequent addition of orthophosphate to the medium restores the initial phosphate level (Nesmeyanova et al., 1973, 1974a,b; Nesmeyanova, 2000). Some genetic manipulations increased the ability of E. coli to accumulate PolyP (Kato et al., 1993a; Hardoyo et al., 1994; Ohtake et al., 1994; Sharfstein et al., 1996). High levels of accumulation were achieved
by genetic regulation and increase in the dosage of *E. coli* genes encoding polyphosphate kinase 1, acetate kinase, and phosphate-inducible transport systems (PSTS, PSTC, PSTA, and PSTB) and by genetic inactivation of *ppx* encoding exopolyphosphatase. The best recombinant strains of *E. coli* eliminated approximately two- and threefold more Pi from the medium than the control strain (Hardoyo et al., 1994). These strains accumulated in the cells approximately 10-fold more Pi than the control strain. The phosphorus content of these recombinant strains reached a maximum of 16 % of dry biomass. About 65 % of cellular phosphorus was stored as PolyP (Ohtake et al., 1994). These data suggest that the systems providing PolyP accumulation in bacteria include many genes in addition to those encoding the major bacterial PolyP metabolizing enzymes, i.e. polyphosphate kinase and exopolyphosphatase.

In some culture conditions, extracellular PolyP was identified as a good source of phosphate (Curless et al., 1996). Using a typical medium in a high-cell-density fermentation of *E. coli*, 40 % higher cell density was obtained when using PolyP instead of Pi as a phosphate source (Curless et al., 1996). It is probable that the expression of specific porins allows PolyP transfer from the culture medium into the cells. The outer membrane porin PhoE of *E. coli* (Bauer et al., 1989) and the OprO porin of *Pseudomonas aeruginosa* (Siehnel et al., 1992; Hancock et al., 1992), induced by phosphate starvation, are examples of proteins which prefere PPi and PolyP rather than Pi.

7.1.2 In Eukaryotes

The accumulation of phosphate reserves as PolyPs and their use at phosphate starvation also occur in eukaryotic microorganisms. The yeast *Saccharomyces cerevisiae* (Liss and Langen, 1962; Kulaev and Vagabov, 1983) and *Neurospora crassa* (Kulaev and Afanasieva, 1969, 1970) are characterized by the phenomenon of phosphate overplus. These accumulate higher contents of PolyPs after phosphate starvation, followed by transfer to a phosphate-containing medium. Such processes touch upon all different PolyP fractions of eukaryotic microbial cells (Kulaev and Afanasieva, 1969, 1970; Kulaev and Vagabov, 1983; Vagabov et al., 2000).

The increase in PolyP level in yeast may be due to phosphate uptake stimulation. Cells of *Candida humicola* demonstrated a 4.5-fold increase in phosphate uptake from the medium and accumulated 10-fold more PolyP during growth at pH 5.5, when compared with growth at pH 7.5 (McGrath and Quinn, 2000). Further details on PolyP accumulation and utilization in eukaryotes are given in Chapter 8.

Whereas mainly cytosolic PolyP performs the function of phosphorus reservation in bacteria, in eukaryotic microorganisms phosphorus is also reserved as PolyP in other cell compartments. Under yeast growth on a medium without phosphate, the PolyP content drops by more than an order in the cytosol, vacuoles and cell walls (Kulaev and Vagabov, 1983; Kulaev et al., 1999). PolyP granules of the cytosol quickly disappear after the yeast has been placed in a phosphate-deficient medium. In a P1-deficient medium, a sharp decrease of the PolyP level, both in whole cells and in vacuoles, was noted, and after 7 h of starvation the PolyP level in vacuoles decreased by 85 %, which indicates an active utilization of the entire PolyP pool for the needs of the cell under these growth conditions (Kulaev et al., 1999; Trilisenko et al., 2002).
Vacuoles also contain an important phosphorus reserve in yeast and fungi (Indge, 1968a,b,c; Urech et al., 1978; Cramer and Daves, 1984). Under phosphate overplus, the content of PolyP in vacuoles of *Saccharomyces carlsbergensis* grew dramatically (Lichko et al., 1982). Some mutants of *S. cerevisiae* having no vacuoles possess low levels of PolyP and are unable to grow on a medium without P_i (Shirahama et al., 1996).

The cells of protozoa (Docampo and Moreno, 2001) and alga *Chlamydomonas reinhardtii* (Ruiz et al., 2001b) possess specific PolyP and Ca²⁺ storage organelles, i.e. acidocalcisomes, which are similar to vacuoles in some properties, especially in the presence of proton-pumping pyrophosphatase. These organelles act as phosphate storage systems for the above lower eukaryotes.

In eukaryotes, the function of PolyP as a phosphate reserve is probably related to the action of different forms of exopolyphosphatases and endopolyphosphatase.

It is possible, however, that in some cases utilization of PolyP does not involve hydrolysis to P_i, but rather phosphate transfer without loss of the energies of the phosphoric anhydride bonds to other compounds. It seems unlikely that the energy stored in PolyPs would be dissipated without being utilized for energy-requiring processes.

7.2 Energy Source

The phosphoanhydride bonds of PolyPs have free energies of hydrolysis similar to that of ATP and occupy an intermediate position in the free energy scale of phosphorylated compounds. Thermodynamically, the standard free energy of hydrolysis of the anhydride linkage yields about 38 kJ per phosphate bond at pH 5. It can therefore act as both a donor and an acceptor of phosphate groups. Belozersky was the first to suggest that PolyP in very primitive organisms could perform the functions of energy-rich compounds as an evolutionary percursor of ATP (Belozersky, 1958).

7.2.1 Polyphosphates in Bioenergetics of Prokaryotes

In many prokaryotes, PolyP is a direct phosphorus donor for biochemical reactions due to the action of enzymes such as polyphosphate–glucose phosphotransferase and NAD kinase. Polyphosphate kinases and PolyP:AMP phosphotransferase link nucleoside–polyphosphate and inorganic PolyP. Polyphosphate kinases 1 and 2 can use PolyPs for the synthesis of different nucleoside triphosphates.

A specific way of using PolyP as an energy source was found in the PolyP-accumulating bacterium *Acinetobacter johnsonii*. When high-P_i-grown cells of strictly aerobic *A. johnsonii* 210A are incubated anaerobically, their PolyP is degraded and P_i is excreted (Van Veen et al., 1994; Kortstee et al., 2000). The energy of PolyP is mobilized by two systems. The polyphosphate:AMP phosphotransferase/adenylate kinase system is responsible for the direct formation of ATP from PolyP, while a constitutive, bidirectional, low-affinity P_i transport system mediates the uptake and efflux of MeHPO₄. The uptake is driven by the proton motive force, while the electrogenic excretion of MeHPO₄ in conjunction with a proton generates this force (Van Veen et al., 1994). Exopolypophosphatase may enhance the
latter energy recycling mechanism by providing the efflux process with a continuous supply of P$_i$ (Kortstee et al., 2000). The known interrelations between ATP and PolyP metabolism in bacteria are shown in Figure 7.1.

7.2.2 Polyphosphate in Bioenergetics of Eukaryotes

In eukaryotes, little direct evidence of the interrelation between the AMP–ADP–ATP system and PolyPs has been found. Polyphosphate kinase genes are absent in the known eukaryotic genomes (Kornberg et al., 1999; Zhang et al., 2002). NAD kinases and glucokinase of eukaryotes have lost the ability to use PolyP as a phosphodonor. It seems that the role of PolyP in bioenergetics is diminished in eukaryotic cells. However, some data suggest preservation of the PolyP function as an energy reserve in eukaryotic microorganisms.

First, the synthesis of ATP from PolyP has been observed in isolated vacuoles of yeast (Schabalin et al., 1977). However, the significance of this process needs further investigation.

Secondly, the induction of high-molecular-weight PolyP synthesis in yeast cells took place in parallel with the exit of K$^+$ ions from the cells under accumulation of divalent cations in the presence of glucose (Okorokov et al., 1983a,b). This accumulation (Figure 7.2) was not affected by antymicine A but completely prevented by ionophores, stimulating K$^+$/H$^+$ exchange and disturbance of the K$^+$ gradient on the plasma membrane. This suggests a possibility of PolyP participation in retention of the energy of transmembrane K$^+$ gradient. PolyP accumulation in the yeast cell under phosphate overplus conditions was inhibited by 50 % by the protonophoric uncoupler FCCP (Trilisenko et al., 2003). This suggests involvement of the energy of proton motive force in PolyP synthesis. At the same time, it was observed that PolyP hydrolysis in *S. cerevisiae* was induced by the protonophoric uncoupler CCCP (Beauvoit et al., 1991).

Thirdly, observations of the PolyP dynamics during the growth of *S. cerevisiae* give additional indirect evidence of PolyP participation in the processes of energy conservation in
Figure 7.2 The content of (a) K⁺, (b) high-molecular-weight PolyP, (c) Zn²⁺, and (d) low-molecular-weight PolyP during Zn²⁺ uptake by the yeast Saccharomyces carlbergensis. The incubation medium contained 100 mM glucose and 3 mM ZnSO₄ (Okorokov et al., 1983b).

cells. Both the total content and distribution of PolyP by fractions in the yeast Saccharomyces cerevisiae depend on the growth phase (Vagabov et al., 1998) (for details, see Chapter 8). Before glucose was consumed from the medium, the biomass and total cellular PolyP content had increased in parallel. After glucose depletion, the content of PolyP in the cells fell sharply and then increased again. A significant decline of the content of intracellular PolyP while Pᵢ was present in the growth medium at high concentrations may imply that in this growth phase PolyP is an energy rather than a phosphate source (Vagabov et al., 1998, 2000). The active synthesis of PolyPs, accompanied by a dramatic decrease in their chain lengths in the logarithmic phase of S. cerevisiae growth in a carbon- and phosphorus-sufficient medium, also suggests that the energy derived from PolyP hydrolysis is necessary to maintain the high rate of yeast growth (Vagabov et al., 1998, 2000). It was reported that PolyP participates in the repair of yeast cells after radiation damage as an alternative energy supply and phosphate source (Holahan et al., 1988).

Furthermore, in an adenine-deficient mutant of N. crassa, where the concentrations of ATP and other adenyl nucleotides are sharply reduced, PolyP is alternatively synthesized during glycolytic phosphorylation by 1,3-diphosphoglycerate:PolyP phosphotransferase (Kulaev and Bobyk, 1971). Thus, under certain conditions PolyP can replace ATP as an energy reserve in eukaryotes.

PolyPs of 12–25 Pᵢ residues were found in the mitochondria of S. cerevisiae (Beauvoit et al., 1989). The amounts increase sharply under phosphate overplus (Pestov et al., 2003). The function of PolyPs in mitochondria needs further investigation. PolyPs also occur
in these organelles under glucose repression. Therefore, their role as an alternative energy reserve seems to be similar to that of pyrophosphate (Mansurova et al., 1973a,b; Mansurova, 1989).

It should be noted that the relation of PolyP and transmembrane gradients in yeast has been confirmed more conclusively than that of PolyP and ATP pools.

7.3 Cations Sequestration and Storage

7.3.1 In Prokaryotes

Complexes of PolyP with common cations (Mg\(^{2+}\), Ca\(^{2+}\) and K\(^{+}\)) have been found in many prokaryotes. One more important function of the PolyP is involvement in the detoxication of heavy metal cations. PolyP sequesters Ni\(^{2+}\) in *Staphylococcus aureus* (Gonzales and Jensen, 1998). The cells of *Anacystis nidulans* with high intracellular PolyP levels showed a greater tolerance to Cd\(^{2+}\) than those with small PolyP reserves (Keyhani et al., 1996). The Cd\(^{2+}\) tolerance of *E. coli* also depends on PolyP metabolism (Keasling and Hupf, 1996). The PolyP produced in a recombinant *E. coli* strain with mer operon encoding mercury transport systems was capable of chalating and reducing the cytotoxicity of Hg\(^{2+}\) (Pan-Hou et al., 2002). However, degradation of PolyP was observed during growth in the presence of heavy metals (Keyhani et al., 1996; Keasling and Hupf, 1996; Keasling, 1997; Keasling et al., 2000).

The PolyP metabolic pathways in *E. coli* were genetically manipulated to test the effect of PolyP on tolerance to cadmium (Keasling and Hupf, 1996; Keasling et al., 2000). A strain mutant in the genes for polyphosphate kinase (*ppk1*) and polyphosphatase (*ppx*) produced no PolyP, whereas the same strain carrying multiple copies of *ppk* on a high-copy plasmid produced significant amounts of PolyP. The cell-doubling time of both strains increased with increasing Cd\(^{2+}\) concentration. In contrast, the mutant strain carrying multiple copies of *ppk* and *ppx* produced one tenth of the PolyP found in the strain carrying multiple copies of *ppk* only and showed no significant increase in cell-doubling time over the same Cd\(^{2+}\) concentration range. Therefore, not only the large amount of intracellular PolyP but also the ability to synthesize and degrade PolyP is important for tolerance to heavy metals (Keasling and Hupf, 1996; Keasling et al., 2000). The following mechanism of PolyP participation in the detoxication of heavy metals has been proposed. PolyP sequesters heavy metals, on the one hand, and the entry of metal cations into the cells stimulates exopolyphosphatase activity, which releases P\(_i\) from PolyP, on the other hand. The MeHPO\(_4^{-}\) ions are then transported out of the cells (Keasling, 1997; Keasling et al., 2000).

7.3.2 In Eukaryotes

In the lower eukaryotes, cation sequestration and storage are observed in vacuoles. Vacuoles of yeast accumulate amino acids (Wiemken and Dürr, 1974), K, Mg\(^{2+}\) and Mn\(^{2+}\) (Okorokov et al., 1980; Lichko et al., 1982) (Table 7.1), and Ca\(^{2+}\) (Ohsumi and Anraku, 1983; Dünn et al., 1994). PolyP, which is able to confine different cations in an osmotic inert form, was also found in these storage organelles (Indge, 1968a,b,c; Westenberg et al., 1989).
Table 7.1 The concentrations of K\(^+\), Mg\(^{2+}\) and P\(_i\) in cytosol and vacuoles of *Saccharomyces carlsbergensis* (Okorokov *et al.*, 1980; Lichko *et al.*, 1982).

<table>
<thead>
<tr>
<th>Ion</th>
<th>Concentration (mM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cytosol</td>
</tr>
<tr>
<td>K(^+)</td>
<td>60</td>
</tr>
<tr>
<td>Mg(^{2+})</td>
<td>5</td>
</tr>
<tr>
<td>P(_i)</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 7.2 The accumulation of Mn\(^{2+}\) (µmol per g of wet biomass), P\(_i\) (µmol per g of wet biomass) and PolyP (µmol of P per g of wet biomass) in the cells of *S. carlsbergensis*. The cells were pre-incubated with KH\(_2\)PO\(_4\) and glucose (Lichko *et al.*, 1982).

<table>
<thead>
<tr>
<th>Compartment</th>
<th>Compound</th>
<th>Cells before incubation with Mn(^{2+})</th>
<th>Cells after 60 min incubation with Mn(^{2+}) and glucose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cytoplasm</td>
<td>P(_i)</td>
<td>1.9</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>PolyP</td>
<td>3.7</td>
<td>3.9</td>
</tr>
<tr>
<td></td>
<td>Osmotically free Mn(^{2+})</td>
<td>< 0.1</td>
<td>1.2</td>
</tr>
<tr>
<td>Vacuole</td>
<td>P(_i)</td>
<td>34.0</td>
<td>27.4</td>
</tr>
<tr>
<td></td>
<td>PolyP</td>
<td>25.5</td>
<td>38.4</td>
</tr>
<tr>
<td></td>
<td>Osmotically free Mn(^{2+})</td>
<td>< 0.1</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td>Bound Mn(^{2+})</td>
<td>< 0.1</td>
<td>9.5</td>
</tr>
</tbody>
</table>

Arginine accumulated in vacuoles was shown to form a complex with PolyP (Dürr *et al.*, 1979; Cramer and Davis, 1984). In the vacuoles of *Neurospora crassa*, spermidine was found along with arginine, and almost half of the PolyP in these organelles was considered to form complexes with these positively charged compounds (Cramer and Davis, 1984), in spite of the existence of an independent regulation of vacuolar pools of basic compounds and PolyP under some culture conditions (Cramer *et al.*, 1980).

The accumulation of Mn\(^{2+}\) in the vacuoles of *Saccharomyces carlsbergensis* (Lichko *et al.*, 1982) correlated well with the increase in PolyP content (Table 7.2). During the accumulation of Mn\(^{2+}\) by *S. carlsbergensis*, both of the PolyP and Mn\(^{2+}\) contents increased simultaneously. This accumulation took place even when the incubation medium contained no P\(_i\) and was accompanied by a simultaneous decrease of P\(_i\) content in the vacuoles. This complex-forming function of PolyP may be very important for the yeast cell, since under a short-term phosphate starvation in the presence of metal cations in the medium the vacuolar PolyP content slightly decreases (Table 7.3) (Lichko *et al.*, 1982). A stable P\(_i\) content in the cytosol under the above conditions is maintained mainly due to a decrease in the vacuolar P\(_i\) pool but not in the vacuolar PolyP pool. It is probable that the ability of fungi to accumulate large amounts of heavy metals is connected with the PolyP pools, especially in vacuoles.
Table 7.3 The contents (µmol of P per g of wet biomass) of P₁ and PolyP in vacuoles of *S. carlsbergensis* under phosphate starvation and phosphate overplus (Lichko *et al*., 1982). The cells were grown for 5 h.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Control<sup>a</sup></th>
<th>P₁ starvation<sup>b</sup></th>
<th>Phosphate overplus<sup>c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>P₁</td>
<td>13.7</td>
<td>17.1</td>
<td>16.3</td>
</tr>
<tr>
<td>PolyP</td>
<td>23.5</td>
<td>17.4</td>
<td>88.9</td>
</tr>
</tbody>
</table>

^a Cells were transferred from a complete medium to a new complete medium.
^b Cells were transferred from a medium free from potassium phosphate to a new phosphate-free medium.
^c Cells were transferred from a medium free from potassium phosphate to a complete medium.

In protozoa and some algae, cation sequestration is one of the functions of acidocalcisome (Docampo and Moreno, 2001; Ruiz *et al*., 2001a,b). This is an electron-dense acidic organelle, which contains pyrophosphate and PolyP bound with Ca²⁺ and other cations. Its membrane possesses a number of pumps and exchangers for the uptake and release of these elements.

It should be noted that the PolyPs of the cell envelope could also be the first barrier on the route of penetration of heavy metal cations into a cell, both in prokaryotes and eukaryotes.

7.4 Participation in Membrane Transport

PolyP is a participant of transmembrane ion transport processes, both in procaryotes and eukaryotes. It is widely accepted that ion channels are exclusively proteins, but recently the formation of ion-selective, voltage-activated channels by complexes of PolyP and poly- (R)-3-hydroxybutyrates (PHBs) has been demonstrated (Reusch and Sadoff, 1988; Reusch, 1992, 1999a, 2000). Each of these have unique molecular characteristics that facilitate ion selection, solvation and transport.

PHBs provide solvation of PolyP salts by encircling them. A relatively weak solvation ability of the carbonyl ester oxygens (when compared with the oxygens of water) and the absence of hydrogen-bond donors for solvation of anions means that PHBs will preferentially interact with salts composed of cations with high solvation energies and anions with diffused charges. As stated above, the critical factors in achieving this solvation are the flexible backbones of PHBs and the optimal distances between the carbonyl oxygens along the backbone. The result is a flexible structure of two discrete polymers bridged together by lanes of cations. Since PolyPs are fully charged at the physiological pH level, they will select divalent cations. The major physiological divalent cations are Mg²⁺ and Ca²⁺. PolyPs do not distinguish between these two cations, but the irregular binding cavities formed by the phosphoryl oxygens of PolyPs with the ester carbonyl oxygens of PHBs strongly favour Ca²⁺ (Reusch, 1999a, 2000).

Complexes of the two polymers, isolated from bacterial plasma membranes or prepared from synthetic polymers, form voltage-dependent, Ca²⁺-selective channels in planar lipid bilayers that are selective for divalent over monovalent cations, permeant for Ca²⁺, Sr²⁺
100 Functions of polyphosphate and polyphosphate-dependent enzymes

and Ba\(^{2+}\), and blocked by transition metal cations in a concentration-dependent manner. Recently, both PolyPs and PHBs have been found to be components of ion-conducting proteins, namely, the human erythrocyte Ca\(^{2+}\)–ATPase pump (Reusch et al., 1997) and the *Streptomyces lividans* potassium channel (Reusch, 1999b). The contributions of PolyPs and PHBs to ion selection and/or transport in these proteins is yet unknown, but their presence gives rise to the hypothesis that these and other ion transporters are supramolecular structures, where proteins, PolyPs and PHBs co-operate to form well-regulated and specific cation transfer systems.

The ability of *E. coli* PolyP–PHB complexes to form calcium-selective channels in planar bilayers was investigated first of all (Reusch et al., 1995; Reusch, 1999a, 2000). PolyP–PHB complexes were extracted from cell membranes into chloroform and then pre-mixed with the phospholipid solution before obtaining the bilayers. Single-channel currents were again observed with voltage steps of 60 mV or more. When the complexes are extracted from membranes or cells, the chloroform solutions contain protein and lipopolysaccharides in addition to PolyP–PHB. To remove these components and to evaluate their influence on channel activity, the complexes were further purified by size-exclusion column chromatography. This eliminated all detectable contaminants and in addition provided an estimate of the molecular weight of the complexes as 17000 ± 4000. Purified complexes were found to be more labile, although the single-channel activity they produced closely resembled that observed for the membrane complexes (Reusch et al., 1995).

To still further determine the composition of the channels, the PHB–Ca\(^{2+}\)–PolyP complexes were reconstituted. PHB was recovered from *E. coli* and carefully purified, and Ca\(^{2+}\)–PolyP was prepared from commercial sodium PolyP and calcium chloride. Single-channel currents similar to those described above were obtained by three different experimental procedures, as described by Reusch et al. (1995). The chain length of chemically synthesized PolyP was determined by acrylamide gel electrophoresis to be in the same range (55–65 residues) as in the *E. coli* complexes (Castuma et al., 1995).

The channels formed in planar bilayers by synthetic complexes were virtually identical to those formed by PolyP–PHB complexes extracted from *E. coli* (Reusch et al., 1995; Reusch, 1999a). The conductances of synthetic and *E. coli* channels were equivalent. The channels formed by PolyP–PHB complexes, *E. coli* or synthetic, show strong selectivity for divalent over monovalent cations (Reusch et al., 1995).

One of the characteristics of protein calcium channels is their sensitivity to a block by transition metal cations. Lanthanum is a particularly potent blocker. It is suggested that permeant and blocking ions compete for the common binding sites in the channels. The PolyP–PHB channel complexes are also blocked by transition metal cations in a concentration-dependent manner. A nearly complete block of single-channel currents was observed in the synthetic complexes at concentrations > 0.1 mM La\(^{3+}\) (0.1 % of Ca\(^{2+}\)) (Das et al., 1997). Evidently, PHB–PolyP complexes are versatile ion carriers whose selectivities may be modulated by small adjustments of the local pH. The results may be relevant to the physiological function of PHB–PolyP channels in bacteria and the role of PHBs and PolyPs in the *Streptomyces lividans* potassium channel (Das and Reusch, 2001).

The mechanism of ion conduction by PolyP–PHB channel complexes can be rationalized in terms of the structures and properties of the component polymers (Reusch, 1999a). One of the notions of how the channel may operate in the cell membrane or planar bilayer is as follows. Ca\(^{2+}\)–PolyP surrounded by PHB forms a salt bridge extending from the cytoplasm...
to the periplasm. A multi-lane channel is formed between the two polymers, where the outer wall is lined with solvation oxygens, and the inner wall is girdled by monovalent phosphoryl anions. At the outer interface, cations are drawn to the ‘mouth’ of the channel by PolyP and divalent cations are preferentially bound. Ca$^{2+}$ occupies most of the binding sites within the channel and the strong bonds between Ca$^{2+}$ and PolyP prevent ion movement, so that the channel is ‘closed’. The PolyP ‘wire’ of negative charges across the bilayer acts as a sensor of membrane potential. PolyP reacts to membrane depolarization (or a voltage step of sufficient strength) by stretching or sliding within the PHB pore, thus dislodging the resident Ca$^{2+}$ and initiating an ion flow. Ca$^{2+}$ at the interface then preferentially permeate into binding cavities at the end of the channel by virtue of their well-suited coordination geometry and the relatively rapid rate, at which they undergo replacement of hydration water. Sr$^{2+}$ and Ba$^{2+}$ are also permeant, but they are not normally found in physiological systems. These cations have the same coordination geometry as Ca$^{2+}$ and, evidently, the flexible PHB envelope can adjust to accommodate the larger ion size. Since the binding sites on PolyPs are identical and spaced at frequent intervals, there is no net potential energy consumption during cation movement within the channel. Segmental motions of the PHB backbone and librational movements of ester carbonyl oxygens carry Ca$^{2+}$ from site to site in parallel single-file lanes, until the internal concentrations rise to an appropriate level or the membrane is again polarized. Transition metal cations, particularly trivalent cations such as La$^{3+}$, bind tightly to PolyPs at the interface but have difficulty with entering because of their unsuitable coordination preferences, and consequently they block the ion flow.

This organization implies that Ca$^{2+}$ could be transported out of the cell by extending the PolyP chain on the cytoplasmic side of the membrane and transporting it through the PHB pore. As the appended phosphate units move into the PHB channel, Ca$^{2+}$ is sequestered from the cytoplasm, and PolyP–Ca$^{2+}$ is exported at the outer face of the membrane (Figure 7.3).

The *Streptomyces lividans* KcsA potassium channel, a homotetramer of 17.6 kDa subunits, was found to contain PHB and PolyP (Reusch, 1999b). PHB was detected in both the tetramer and monomer species of KcsA by reaction to anti-PHB IgG on Western blots and estimated as 28 monomer units of PHB per KcsA tetramer by a chemical assay, which converts PHB into its unique degradation product, crotonic acid. PolyP was detected in KcsA tetramers, but not in monomers, by metachromatic reaction to o-toluidine blue stain on SDS-PAGE gels. A band of free PolyP was also visible, suggesting that PolyP is released when tetramers dissociate. The exopolypophosphatase of *S. cerevisiae* degraded free PolyP, but tetramer-associated PolyP was not affected, thus indicating it was inaccessible for the enzyme. PolyP in KcsA was estimated as 15 monomer units per tetramer by an enzymatic assay with polyphosphate kinase. It was suggested that PHB is covalently bound to the KcsA sub-units, while PolyP is held within the tetramers by ionic forces.

Complexes of PolyP and PHB were found in the membranes of the endoplasmic reticulum and mitochondria of animal cells (Reusch, 1989), which suggests their participation in the processes of transmembrane transfer. The most intriguing report was that the Ca$^{2+}$–ATPase purified from human erythrocytes contains PolyP and PHB and that the plasma membrane Ca$^{2+}$–ATPase may function as a polyphosphate kinase; it exhibits ATP–PolyP transferase and PolyP–ADP transferase activities (Reusch et al., 1997). These findings suggest a novel supramolecular structure for the functional Ca$^{2+}$–ATPase and a new mechanism of uphill Ca$^{2+}$ extrusion coupled with ATP hydrolysis (Reusch et al., 1997).
The next important property of PolyP–PHB complexes is their effect on DNA transfer into bacterial cells. It was the striking correlation between PolyP–PHB concentrations and transformation efficiencies in *Azotobacter vinelandii*, *Bacillus subtilis* and *E. coli* that led Reusch and Sadoff (1988) to postulate that the complexes are involved in DNA transmembrane transport.

Nevertheless, it was found that, regardless of the method used to develop competence, the result is a conspicuous increase in the concentration of the PolyP–PHB complexes in the plasma membranes. When formation of the complexes is prevented by any means, transformation is inhibited (Reusch *et al.*, 1986; Huang and Reusch, 1995). DNA binding
requires divalent cations, and only certain cations are fit for this – \(\text{Mg}^{2+}, \text{Ca}^{2+}, \text{Mn}^{2+} \) and \(\text{Sr}^{2+} \). All of these cations form strong ionic bonds with phosphate and can ‘cross-bridge’ the phosphate residues of DNA and PolyP. For DNA uptake to occur, cells must return to normal growth media. Examination of the thermotrophic fluorescence spectrum of the cells therein has revealed a rapid decrease in the intensity of the 56 °C fluorescence peak, indicating that the PolyP–PHB complexes are being removed from the membrane. Hence, a mechanism of DNA transmembrane transfer has been proposed. As PolyP is retrieved by cytoplasmic enzymes, it may draw the bound DNA molecule into and through the PHB channel. From this viewpoint, various procedures for competence development and DNA transformation are simply resourceful methods to change the direction of PolyP movement within the PHB pore from outward to inward. The cells are first placed into an environment that leads to a substantial increase in PolyP–PHB, with a sufficient number of divalent cations to bind DNA to PolyP. Then, they are transferred to a medium where they ordinarily sustain much lower levels of membrane complexes, thus inducing an inward flow of PolyP. In support of this hypothesis, a single-stranded donor DNA was found in complex with PHB, when DNA uptake in \(\text{E. coli} \) RR1 was interrupted in the first few minutes (Reusch \textit{et al.}, 1986; Huang and Reusch, 1995; Reusch, 1999a).

Little is known of the ways of biosynthesis and insertion in the membranes of PolyP–PHB–Ca\(^{2+}\) complexes. In polyphosphate kinase 1 mutants of \(\text{E. coli} \), the amounts of the complexes did not change (Castuma \textit{et al.}, 1995). Therefore, the PolyP in the complexes is synthesized not by polyphosphate kinase 1 but by another enzyme. \(\text{E. coli} \) strain, which lacks the AcrA component of a major multi-drug resistance pump, had greatly reduced amounts of the complexes and was defective in its ability to maintain sub-micromolar levels of free Ca\(^{2+}\) in the cytoplasm (Jones \textit{et al.}, 2003). This indicates that the AcrAB transporter may have a novel, hitherto undetected, physiological role, either directly in the membrane assembly of the PHB complexes or the transport of a component of the membrane, which is essential for assembly of the complexes into the membrane.

It should be noted that complexes of different proteins with PolyPs (Schröder \textit{et al.}, 1999) or PHBs (Reusch \textit{et al.}, 2002) were found in cells. The prokaryotic histone-like protein, \(\text{E. coli} \) H-NS, and eukaryotic calf thimus histone proteins, Hq, H2A, H2B, H3 and H4, were found to be post-translationally modified by conjugation with short-chain PHBs. The presence of these compounds in proteins with similar functions in such diverse organisms suggests that PHBs play a certain role in shaping the structure and/or in facilitating the function of these important proteins (Reusch \textit{et al.}, 2002). It cannot be excluded that complexes of proteins with PolyP, PHB, and both polymers together, may be found in different cell compartments, not only in the membranes, and have any regulatory role, which needs further investigation.

7.5 Cell-Envelope Formation and Function

7.5.1 Polyphosphates in the Cell Envelopes of Prokaryotes

The cell envelopes of bacteria play an essential role in bacterial virulence, surface attachment and biofilm formation (O’Toole \textit{et al.}, 2000). This cell compartment possesses PolyPs, and thereby its role in the above functions was intensively investigated. The conclusion was
made on the essential role of polyphosphate kinase and PolyP in bacterial pathogenesis (Kornberg, 1999; Kornberg et al., 1999).

PolyP was shown to be a component of the cell capsule of *Neisseria*. These capsular PolyPs were about a half of the cellular content of PolyP (Tinsley et al., 1993). The polyphosphate kinase deficient mutant of *Neisseria* had a reduced PolyP pool and a lower pathogenicity than the wild-type strain (Tinsley and Gotschlich, 1995).

The effects on the cell-envelope functions of mutations in the *ppk1* gene encoding the polyphosphate kinase 1 were studied (Rashid and Kornberg, 2000; Rashid et al., 2000a,b). The *ppk1* null mutants were prepared from *Pseudomonas aeruginosa*, *Vibrio cholerae*, *Salmonella enterica*, *E. coli* and *Klebsiella pneumoniae*, and the motility of these mutants was compared with that of the corresponding wild-type strains on swim plates (1 % tryptone, 0.5 NaCl, 0.3 % agar). The swim areas were decreased in *ppk* null mutants to 13–79 % of the corresponding areas of wild strains. When the mutants were transformed by PPK-expressing plasmids, the motility was completely restored. Electron microscopy revealed that the mutants possessed apparently intact flagella. Thus, the effect of the mutation on swimming motility was proposed to be due to altered functioning of the flagella (Rashid et al., 2000a). In a liquid culture, however, the *ppk* mutants were motile (Rashid et al., 2000a).

The *ppk* mutant of *P. aeruginosa* was also deficient in type-IV pili-mediated twitching and in swarming motility (Rashid and Kornberg, 2000). Some suggestions on the molecular mechanisms of PolyP– PPK action in motility were made (Rashid and Kornberg, 2000). These included the possible role of PolyP in the phosphorylation of Che-Y-like proteins or modulation of the Ca$^{2+}$ level (Rashid and Kornberg, 2000).

The role of PolyP in the cell envelope of prokaryotes may be connected with their anionic properties, important for providing the negative charge of this compartment. In addition, PolyPs may affect the cell-envelope functions by gene activity regulation, as will be discussed below.

7.5.2 Polyphosphates in the Cell Envelopes of Eukaryotes

PolyPs are present in the cell envelopes of the lower eukaryotes, where their contents may vary depending on the cultivation conditions. PolyP was found at first in the cell envelope of *Neurospora crassa* (Krascheninnikov et al., 1967; Kulaev et al., 1970) and *Endomyces magnusii* (Kulaev et al., 1967; Kulaev and Afanasieva, 1970). This high-molecular-weight PolyP was located outside of the cell, adjacent to the outer side of the cytoplasmic membrane.

PolyP was revealed outside of the plasma membrane of the yeast *Kluveromyces marxianus* by fluorescence of 4’6-diamidino-2-phenylindole (Tijssen et al., 1982), by osmotic shock treatment (Tijssen et al., 1983), by decrease of the 31P NMR signal under UO$_{2}^{2+}$ binding (Tijssen and van Steveninck, 1984), and by lead staining and X-ray microanalysis (Tijssen and Van Steveninck, 1985). When the cells of *K. marxianus* were subjected to osmotic shock, they released a limited amount of PolyP into the medium, which represented about 10 % of the total cellular content. The procedure of osmotic shock caused no substantial membrane damage, as was judged from limited K$^{+}$ and unimpaired cell viability. The released PolyP fraction differed from other cellular PolyPs by the higher chain length and the lower metabolic turnover rate (Tijssen et al., 1983).
The PolyP in the cell envelope is of great importance for maintenance of the negative charge on the cell surfaces of fungi (Vagabov et al., 1990a; Ivanov et al., 1996). The cell-envelope PolyPs can bind with a monovalent cation dye, 9-aminoacridine (9AA), in the presence of an inhibitor of translocation of the dye across the plasma membrane, namely thiamine (Theuvenet et al., 1983). From the results of measuring the absorption rate of 9AA, one can determine variations in the PolyP content in the cell envelope. Using various P_i concentrations in the medium, it is possible to initiate significant variations in the PolyP content in yeast and to observe their effects on 9AA absorption by the cell envelope. Phosphate starvation of cells resulted in a significant decline of their ability to absorb 9AA, while their subsequent growth on a phosphate-rich medium promoted an increase in absorption of the dye. Interestingly, in this case the pre-treatment of cells with UO^{2+} caused a decrease in 9AA sorption of almost 80%. These results are evidence of an appreciable contribution of PolyP to the total negative charge of the cell envelope (Vagabov et al., 1990).

The PolyP content in cell envelopes affects the extent of cytoplasmic membrane damage induced by different ionic compounds, in particular, a cationic surfactant – cetyltrimethylammonium bromide (CTAB). It was observed that the higher the PolyP content of the cell envelope, then the more CTAB is concentrated there, thus resulting in an intensification of its damaging effect on the cell (Ivanov et al., 1996).

The putative pathway of coordination of mannan and PolyP biosynthesis by cell-wall formation has been proposed (Kulaev, 1994), which explains the presence of PolyP outside of the cytoplasmic membrane (Figure 7.4). Dolichyl–phosphates (Dol–Ps) act as transmembrane carriers of carbohydrate residues in glycoprotein biosynthesis. GDP–mannose at the

![Figure 7.4](image_url)
Figure 7.4 The putative pathway of coordination of mannan and PolyP biosynthesis in yeast.
cytoplasmic side of the endoplasmic reticulum interacts with the phosphate residue of Dol–P. The Dol–P–P–mannose is transported across the membrane so that the phosphomannose residue enters the lumen, where mannosyl transferase and Dol–P–P:PolyP phosphotransferase reactions occur. As a result, Dol–P is formed, which again crosses the membrane and could interact on its cytoplasmic side with a new molecule of GDP–mannose. The mannoproteins and PolyP are transported to the cell envelope by special vesicles.

One of the specific processes of cell–cell interactions in the lower eukaryotes is the symbiosis between fungi and plants. It was observed that mycorrhiza possesses a lot of phosphorus and PolyPs. For example, microsclerotia of the root-inhabiting fungus *Phialocephala fortinii* at an early stage of interaction with the roots of *Asparagus officinalis* was shown to accumulate PolyPs (Yu *et al.* , 2001). PolyPs were found in vacuoles of fungal cells in *Eucalyptus pilularis/Pisolithus tinctorius* ectomycorrhizas (Ashford *et al.*, 1999). The mycorrhization of corn plants by the fungi *Glumus mosseae* and *Glumus fasciculatum* was shown to stimulate phosphorus uptake and accumulation (Shnyreva and Kulaev, 1994).

It cannot be excluded that PolyPs, located on cell surfaces of the lower eukaryotes, may play a certain role in cell–cell interactions and especially in the interactions of fungi and plant cells during mycorrhiza development.

7.6 Regulation of Enzyme Activities

Being a polyanion, PolyP can interact with many proteins and enzymes, especially those rich in cationic amino acid residues. For example, in the presence of PolyP, cytochrome C forms stable protein aggregates as a result of binding of the polymer at a single site close to lysines 13, 86 and 87 on the protein surface (Concar *et al.*, 1991).

It should be noted that the effect of PolyP on enzymatic activities might involve different mechanisms. First, there is a competition with the substrate for the binding site. It is probable that inhibition by PolyP of polygalacturonase activity, which is important for pathogenicity of the fungus *Botrytis cinerea* (Mellerharel *et al.*, 1997) and restriction endonucleases of the fungus *Colleotrichum* (Rodriguez, 1993), is realized in such a way.

Secondly, there is an interaction of PolyP with polycationic activators. As for yeast trehalase, the inhibitory effect is probably due to the interactions with polyamines, which are activators of the enzyme (App and Holzer, 1985). PolyP inhibited trehalase from vegetative yeast cells and, to a lesser extent, that from the spores (Wolska-Mitaszko, 1997).

As for deaminase, the kinetic analysis suggests a partial mixed-type inhibition mechanism. Both the K_i value of the inhibitor and the breakdown rate of the enzyme–substrate–inhibitor complex are dependent on the chain length of the PolyP, thus suggesting that the breakdown rate of the enzyme–substrate–inhibitor complex is regulated by the binding of Polyphosphate to a specific inhibitory site (Yoshino and Murakami, 1988). More complicated interactions were observed between PolyP and two oxidases, i.e. spermidine oxidase of soybean seedling and bovine serum amine oxidase. PolyP competitively inhibits the activities of both enzymes, but may serve as an regulator because the amino oxydases are also active with the polyamine–PolyP complexes (Di Paolo *et al.*, 1995).

The complexing of cations important for enzyme activities may be the third way of PolyP action on enzyme activity. An example of such action is the mechanism leading to growth inhibition, morphological changes and lysis of *Bacillus cereus* when challenged
by a long-chain PolyP (Maier et al., 1999). At a concentration of 0.1 % or higher, PolyP had a bacteriocidal effect on logarithmic-phase cells. This activity was strictly dependent on active growth and cell division, since PolyP failed to induce lysis in cells treated with chloramphenicol and in stationary-phase cells, which were, however, bacteriostatically inhibited by PolyP. The 0.1 % PolyP inhibited spore germination and outgrowth, and a higher concentration (1.0 %) was even sporocidal. Addition of Mg$^{2+}$ and Ca$^{2+}$ could almost completely block and reverse the antimicrobial activity of PolyP. While DNA replication and chromosome segregation were undisturbed, electron microscopy revealed a complete lack of septum formation. It was proposed that PolyP might have an effect on the ubiquitous bacterial cell division protein FtsZ, whose GTPase activity is known to be strictly dependent on divalent metal ions. (Maier et al., 1999). The bacteriostatic effect of PolyP on Staphylococcus aureus was also observed (Jen and Shelef, 1986). The addition of PolyP did not significantly inhibit the growth of Listeria monocytogenes and S. aureus in milk, probably because of high concentrations of divalent metal cations in this growth medium (Rajkowski et al., 1994).

Some other effects of PolyP on the important proteins were found, the mechanisms of which are still unclear. PolyP had a stimulatory effect on the regeneration of GTP-bound from the GDP-bound form of human and yeast ras proteins. These authors suggested possible mechanisms of participation of such effects in the regulation of ras-dependent pathways (De Vendittis et al., 1986).

PolypS, as well as nucleoside di-, tri- and tetraphosphates and phosphorylated sugars, caused a dose-dependent (1–5 mM range) delay in the appearance of the cytopathogenic effect of Clostridium difficile toxin B on human lung fibroblasts. With a longer phosphate chain, the delay was more pronounced. By analogy with the P site on diphtheria toxin, it was postulated that C. difficile toxin B contains a PolyP-binding site. This site is separate from the receptor-binding site but is involved in the interaction of toxin B with cell surfaces (Florin and Thelestam, 1984).

The effects of PolyPs on the enzymes of RNA metabolism may be a way of participation of such biopolymers in gene-activity modulation. RNA polymerase isolated from the stationary-phase cells of E. coli was found to be closely associated with PolyP (Kusano and Ishihama, 1997). The inhibitory effects of PolyPs on transcription were examined by using two forms of the holoenzyme, one containing σ70 (the major sigma-factor for transcription of the genes expressed during exponential cell growth) and the other containing σ38 (the sigma-factor operating in the stationary phase). At low salt concentrations, PolyPs inhibited the transcription by both forms of the RNA polymerase, with σ70 and with σ38. At high-salt concentrations, the σ38-containing enzyme is activated, while the σ70-containing enzyme is unable to function. These results show that PolyPs may play a certain role in the promoter-selectivity control of RNA polymerase in E. coli growing under high osmolarity and during the stationary-growth phase.

The polyphosphate kinase was found to be an additional component of E. coli degradosome (Blum et al., 1997). This multi-enzyme complex, whose function is RNA processing and degradation, consists of four major proteins, i.e. endoribonuclease Rnase E, exoribonuclease PNPase, RNA helicase and enolase. The ppk-deleted mutant showed an increased stability of the ompA mRNA. Purified polyphosphate kinase was shown to bind RNA, while RNA binding was prevented by ATP (Blum et al., 1997). PolyPs were found to inhibit RNA degradation by the degradosome in vitro. This inhibition was overcome by ADP, required
for ATP regeneration when using PolyP. It was suggested that polyphosphate kinase in the degradosome maintained an appropriate micro-environment, removing inhibitory PolyPs and regenerating ATP (Blum et al., 1997).

In addition, PolyPs are most likely involved in the regulation of enzyme activities by participation in their phosphorylation. A protein phosphorylation process, using not ATP but high-polymer PolyPs, was revealed in the archae Sulfolobus acidocaldarius (Skorko, 1989). Tripolyphosphate was observed to be a phosphodonor of selective protein phosphorylation of rat liver microsomal membrane (Tsutsui, 1986).

7.7 Gene Activity Control, Development and Stress Response

7.7.1 In Prokaryotes

The involvement of PolyPs in the regulation of enzyme activities and expression of large groups of genes is the basis of their effects on survival under stress conditions and adaptation to the stationary-growth phase. The genes encoding the enzymes of PolyP metabolism in E. coli were proposed to form a phosphate regulon together with a number of other genes, the products of which are involved in phosphate metabolism and transport (Nesmeyanova et al., 1975 a,b). At present, the interrelation of PolyP metabolism and the activities of PHO and PHOB regulons is supplemented with new details. A number of works of A. Kornberg and co-workers show that polyphosphate kinase and PolyPs synthesized by this enzyme play the key role in the transition of bacteria from active growth to the stationary phase, as well as in their survival in the stationary phase and under stress. These are summarized in a number of publications (Kornberg, 1999; Rao and Kornberg, 1999; Kornberg et al., 1999).

It should be noted that in bacteria there is a tight interrelation between PolyP and a signal compound, guanosine 3,5-bispyrophosphate (ppGpp). PolyP accumulation requires the functional PHOB gene and higher levels of (p)ppGpp. The latter serves as an alarmon in prokaryotes, which distributes and coordinates different cellular processes according to the nutritional potential of the growth medium (Svitil et al., 1993; Nystrom, 1994, 2003; Faxen and Isaksson, 1994; Schreiber et al., 1995). This polyfunctional signalling compound is accumulated in bacteria in response to either amino acid or energy source starvation (Svitil et al., 1993; Nystrom, 1994). The major role in the control of its level in E. coli is played by the genes spoT (encoding guanosine 3′-bis(diphosphate) 3′-pyrophosphohydrolase and, probably, guanosine 3′-bis(diphosphate) synthetase, designated as PSII) and relA (encoding ppGpp synthetase I, PSI) (Gentry and Cashel, 1996). Activation of RelA results in a global change of cellular metabolism, including enhanced expression of the stationary-phase sigma factor RpoS. The product of the gene gppA participates in the hydrolysis of this compound (Keasling et al., 1993). When the intracellular level of ppGpp in E. coli was enhanced by expression of truncated relA, encoding the more catalytically active ppGpp synthetase, the rate of protein synthesis was inhibited to the level characteristic of amino acid starvation (Svitil et al., 1993). The stringent response genes relA and spoT are important for Escherichia coli biofilms-formation slow-growth conditions (Balzer and McLean, 2002). Inhibition of transcription of ribosomal RNA in Escherichia coli upon amino acid
starvation is thought to be due to the binding of ppGpp to RNA polymerase (Chatterji et al., 1998). The ppGpp directly inhibits rRNA promoter in vitro (Barker et al., 2001). In addition to the role of inhibition of ribosome synthesis, ppGpp participates in coordination of DNA replication and cell division (Schreiber et al., 1995). In ppGpp-deficient relA spoT mutants, the expression of rpoS is strongly reduced (Lange et al., 1995). PolyP and ppGpp are factors (Ishihama, 2000) coordinating in the activation of rpoS. A recent review (Venturi, 2003) analyses the main studies on rpoS transcriptional regulation in E. coli and Pseudomonas.

However, in some cases these compounds act independent of, or contrary to, rpoS. In E. coli and S. typhimurium, the regulatory protein leuO, which is potentially involved in the regulation of many genes, is expressed when bacteria are in the process of transition from the exponential to the stationary growth phase. LeuO expression is very sensitive to the cellular level of ppGpp but not dependent on the rpoS (Fang et al., 2000).

The second example is the biosynthesis of antibiotics. The ppGpp is a positive effector in the synthesis of antibiotics in Streptomyces. The disruption of the ppGpp synthetase relA gene of Streptomyces coelicolor (Chakraburty and Bibb, 1997) and Streptomyces antibioticus (Hoyt and Jones, 1999) gives phenotypes unable to produce antibiotics. The disruptants were unable to accumulate ppGpp to the level sufficient for initiation of morphological differentiation and antibiotics production.

The antibiotic producer Streptomyces lividans possesses a ppk gene, which was cloned (Chouayekh and Virolle, 2002). Its transcription was only detectable during the late stages of growth in a liquid minimal medium. A mutant strain interrupted for ppk was characterized by increased production of the antibiotic actinorhodin. This production was completely abolished by the addition of KH$_2$PO$_4$ to the medium. In the ppk mutant strain, this increased production correlated with enhanced transcription of actII-ORF4 encoding a specific activator of the actinorhodin pathway. In that strain, the transcription of redD and cdaR, encoding specific activators of the undecylprodigiosin and calcium-dependent antibiotic biosynthetic pathways, respectively, was also increased, but to a lesser extent. The enhanced expression of these regulators did not seem to relate to increased relA-dependent ppGpp synthesis, as no obvious increase in relA expression was observed in the ppk mutant strain. These results suggested that the negative regulatory effect exerted by ppk on antibiotic biosynthesis was most probably caused by repression exerted by the endogenous P$_i$, resulting from the hydrolysis of PolyP synthesized by polyphosphate kinase, on the expression of specific activators of the antibiotic biosynthetic pathways (Chouayekh and Virolle, 2002). Earlier, the interaction of PolyP metabolism and antibiotic biosynthesis has been studied in Streptomyces aureofaciens (Hostalek et al., 1976; Kulaev et al., 1976) and in Streptomyces levorini (Zuzina et al., 1981) and the competition between PolyP accumulation and antibiotic biosynthesis was revealed (Figures 7.5 and 7.6). The low-productive strains contained a 10-fold higher PolyP level than the high-productive ones. The excess of P$_i$ in the culture medium increased PolyP accumulation and decreased the synthesis of antibiotics (Zuzina et al., 1981).

There are other examples of the influence of PolyPs on the expression of some genes omitting rpoS. If the level of cellular PolyP in E. coli was reduced to a barely detectable concentration by overproduction of exopolyphosphatase (Shiba et al., 1997), the cells were more sensitive to UV or mitomycin C than the control cells. PolyP accumulation was observed after treatment with mitomycin C, whereas the PolyP level was below the detectable level
Figure 7.5 Changes in (a) PolyP content, (b and c) PolyP-metabolizing enzymes activities, and (c) biomass and production of chlortetracycline during growth of the low-producing strain of *Streptomyces aureofaciens* 2209 (Kulaev et al., 1976). (a) (1) total acid-insoluble PolyP; (2) PolyP extracted with hot perchloric acid; (3) salt-soluble PolyP: (b) (1) polyphosphate kinase (centre scale); (2) 1,3-diphosphoglycerate-polyphosphate phosphotransferase (right-hand scale); (3) PolyP glucokinase (left-hand scale): (c) (1) biomass; (2) chlortetracycline; (3) exopolyphosphatase with PolyP$_{290}$; (4) pyrophosphatase; (5) tripolyphosphatase.

in cells that overproduced exopolyphosphatase. When exopolyphosphatase-overproducing cells were transformed again by a multicopy plasmid that carried the polyphosphate kinase gene (*ppk*), the cells accumulated a great amount of PolyP and restored the UV and mitomycin C sensitivities to the level of the control cells. In addition, a strain containing multiple copies of *ppk* accumulated a large amount of PolyP. It is probable that PolyP is necessary to regulate the expression of SOS genes (Shiba et al., 1997, 2000; Tsutsumi et al., 2000).

The important role of polyphosphate kinase in the survival of *E. coli* under stress and starvation was established by the study of a mutant deficient in the *ppk* gene and lacking the most part of PolyP (Rao and Kornberg, 1996; Rao et al., 1998). Mutant cells show no
Figure 7.6 Changes in (a) PolyP content, (b and c) PolyP-metabolizing enzymes activities, and (c) biomass and production of chlortetracycline during growth of the high-producing strain of *Streptomyces aureofaciens* 8425 (Kulaev et al., 1976). (a) (1) total acid-insoluble PolyP; (2) PolyP extracted with hot perchloric acid; (3) salt-soluble PolyP: (b) (1) polyphosphate kinase (centre scale); (2) 1,3-diphosphoglycerate-polyphosphate phosphotransferase (left-hand scale); (3) PolyP glucokinase (right-hand scale): (c) (1) biomass; (2) chlortetracycline; (3) exopolyphosphatase with PolyP290; (4) pyrophosphatase; (5) tripolyphosphatase.

Phenotypic changes during the exponential phase of growth. During the stationary phase, the mutants survive poorly and are less resistant to heat, H$_2$O$_2$ oxidants and osmotic challenge with 2.5 M NaCl. After a week in the stationary phase, the mutant is replaced by a small-colony variant with improved viability and stress resistance. In as much as the levels of polyphosphate kinase activity and PolyP remain low, some other genetic alteration can be inferred (Rao and Kornberg, 1996). The suppressive influence of the *rpoS* gene on the *ppk1* mutation was observed (Rao and Kornberg, 1996). The product of *rpoS* is the σ^{38} sub-unit of RNA polymerase responsible for the expression of nearly 50 genes involved in adjustments to the stationary-growth phase, high osmolarity and other stressful agents (Loewn et al., 1998; Ishihama, 2000). When multiple-copy *rpoS* plasmids were introduced into the *ppk1* mutant, heat resistance was elevated to the wild-type level (Rao and Kornberg,
112 Functions of polyphosphate and polyphosphate-dependent enzymes

1996). Therefore, the interrelation of PolyP, polyphosphate kinase and the \(\sigma^{38} \) sub-unit of RNA polymerase was confirmed.

The interrelation of PolyP and induction of \(rpoS \) expression were studied when the PolyP level in \(E. coli \) was down-shifted by expression of the yeast PPX1 (Shiba et al., 1997). As a consequence, a 10-fold increase of \(\text{H}_2\text{O}_2 \) sensitivity was observed. The sensitivity increased 1000-fold in a mutant lacking HPI catalase. Thus, the catalase most dependent on PolyP was stationary-phase \(rpoS \)-dependent catalase HPII (Shiba et al., 1997). Induction of the expression of both catalase HPII and the stationary-phase \(\sigma \) factor was prevented in cells with low PolyP levels. The resistance was restored to the parent-strain level by complementation with plasmids expressing \(ppk1 \). The levels of ppGpp and pppGpp were not changed in mutants possessing yeast exopolyphosphatase PPX1 with enhanced PolyP hydrolysis. In view of the capacity of additional \(rpoS \) expression to suppress the sensitivity to \(\text{H}_2\text{O}_2 \), the PolyP action was attributed to the induction of \(rpoS \) (Shiba et al., 1997).

\(E. coli \) mutants lacking cytoplasmic superoxide dismutases (SODs) show an inability to survive in the stationary phase and a high sensitivity to redox-cycling reagents and \(\text{H}_2\text{O}_2 \) (Carlioz and Touati, 1986) similar to the \(ppk1 \) mutants. \(E. coli \) mutants lacking SODs accumulate as much PolyP as the parent strain (Al-Maghrebi and Benov, 2001), when grown in the PolyP-accumulating conditions described by Rao et al. (1998). The increase of PolyP content makes the SODs mutants more resistant to \(\text{H}_2\text{O}_2 \), and the cells show the higher rate of \(\text{H}_2\text{O}_2 \) consumption (Al-Maghrebi and Benov, 2001). No direct protective effect of PolyP on oxidative DNA damage was observed. Indeed, \(rpoS \) dependent-HPII catalase was much higher in those cells with high levels of PolyP (Al-Maghrebi and Benov, 2001). Thus, the results of Shiba et al. (1997) were confirmed. The reason for the protective effect of PolyP is the induction of catalase and probably some DNA repair enzymes as members of the \(rpoS \) regulon (Shiba et al., 1997, 2000; Al-Maghrebi and Benov, 2001).

Many other bacteria show similar phenotypic defects, when the \(ppk1 \) gene is knocked out. The \(ppk1 \) mutants of \(Neisseria gonorrhoeae \) and \(N. meningitidis \) grew less vigorously than the wild-type cells and showed a striking increase in sensitivity to human serum (Tinsley and Gotschlich, 1995). The Vibrio cholerae \(ppk \) mutant was similar to that of \(E. coli \) in response to heat and oxidants and in a long-term survival on synthetic medium (Ogawa et al., 2000b). The P. aeruginosa PAO1 \(ppk \) mutant shows no defects in adaptive responses but is severely impaired in motility and surface attachment (Rashid and Kornberg, 2000; Rashid et al., 2000a,b). The \(ppk \) mutants of Porphyromonas gingivalis (Chen et al., 2002) failed to survive in the stationary phase, while those of Shigella and Salmonella (Kim et al., 2002) have defects in growth on minimal media. It appears that the \(ppk \) gene is essential for stationary-phase long-term survival of \(P. gingivalis \) (Chen et al., 2002), although this gene may not be the only enzyme responsible for PolyP production in this organism. Unlike the \(ppk1 \) mutant of \(E. coli \), the sensitivity of the \(ppk1 \) mutant of \(P. gingivalis \) to heat and oxidants remains the same as in the parent strain.

Biofilms are sessile microbial communities, the formation of which is initiated by surface attachment of individual bacteria, followed by cell–cell interactions and development in a three-dimensional structure of the colonies (O’Toole et al., 2000). Biofilm formation is a multi-step development process over a period of several hours (Costerton et al., 1995). The initial surface interaction is mediated by flagella and pili functioning, then the exopolysaccharides stabilize the biofilm and, finally, intercellular communication occurs through signaling molecules (Watnic and Kolter, 1999).
The ppk1 null mutation affects the adherence properties of bacteria. The Salmonella ppk mutant showed a 20–35 % decrease of adherence to abiotic surface (polystyrene) relative to the wild type. The mutant was only half as invasive in epithelium cells (Kim et al., 2002). The P. aeruginosa ppk1 mutant was moderately defective at an early stage of attachment to polystyrene surface, but the biofilm maturation was greatly affected (Rashid et al., 2000b). The ppk mutant of Porphyromonas gingivalis, which seems to be important in the etiology of periodontitis, was attenuated in biofilm formation on poly(vinyl chloride) and glass, while the insertion of an intact ppk gene copy restored its biofilm formation (Chen et al., 2002).

In view of the fact that the motility and biofilm formation of pathogens are essential to invade and establish systemic infections in host cells, these data suggest a crucial and essential role of polyphosphate kinase or PolyP in bacterial pathogenesis.

The quorum-sensing mechanism allows bacteria to coordinate the expression of particular genes. In Pseudomonas aeruginosa, a complex quorum-sensing circuitry, associated with RpoS expression, is required for cell-density-dependent production of many secreted virulence factors, including LasB elastase. The overexpression of relA activated the expression of rpoS in P. aeruginosa and led to premature, cell-density-independent LasB elastase production. It was suggested that the stringent response can activate two quorum-sensing systems of P. aeruginosa independent of cell density (Van Delden et al., 2001).

In as much as the ppk1 mutant of P. aeruginosa is defective in three types of motility, surface attachment and biofilm differentiation, Rashid et al. (2000b) determined the levels of the quorum-sensing molecules, AI-1 (N-3-(oxodecanoyl)-L-homoserine lactone) and AI-2 (N-butyryl-L-homoserine lactone). Their levels in the ppk1 mutant were reduced to ~50 % of those of the parent type. The complementation of the mutant with the ppk1 gene doubled the parent strain level (Rashid et al., 2000b). The extracellular virulence factors, elastase and rhamnolipid, also decreased in the ppk1 mutant and were restored when the mutant was complemented by ppk-containing plasmid (Rashid et al., 2000b). As a result, the lethality of the P. aeruginosa ppk mutant in the burn-mouse model decreased to ~7 % of the lethality of the parent strain (Rashid et al., 2000b).

Thus, PolyPs and polyphosphate kinase affect the development processes in many bacteria.

One example of the adaptation of bacteria to an unfavourable environment is their response to amino acid starvation. In an environment rich in amino acids, cells do not produce enzymes of amino acid synthesis. However, in the case of a nutritional downshift in the environment, cells must use their own proteins as sources of amino acids for building enzymes required for amino acid biosynthesis pathways (Gottesman and Maurizi, 2001).

The mutant of E. coli lacking ppk1 exhibited an extended lag phase of growth when shifted from a rich to minimal medium. Supplementation of amino acids to the minimal medium abolished the extended growth lag of the mutant. Levels of the stringent response factor, ppGpp, increased in response to the nutritional downshift, but unlike in the wild type, the levels were sustained in the mutant. These results suggested that the mutant was impaired in the induction of amino acid biosynthetic enzymes. The rate of protein degradation increased in response to the nutritional downshift in the wild type, whereas it did not in the mutant. Thus, polyphosphate kinase ppk1 is required to stimulate protein degradation and for adaptation to amino acid starvation in E. coli (Kuroda et al., 1999).

Convincing evidence was obtained that protein degradation in E. coli during amino acid starvation depends on the ATP-dependent proteases Lon and Clp (Kuroda et al., 2001). Mutations in Lon and Clp proteases produced the same phenotype as ppk1 mutation – the
cells failed to overcome a nutritional downshift. Moreover, the ATP-dependent protease Lon formed a complex with PolyP and degraded most of the ribosomal proteins, including S2, L9 and L13. PolyP may stimulate ribosomal protein degradation by the Lon protease, thereby supplying the amino acids needed to respond to starvation (Kuroda et al., 2001). Earlier, it was shown that amino acid starvation in *E. coli* results in a significant accumulation of PolyP.

Intriguingly, ppGpp is also required for PolyP accumulation and for increasing degradation of otherwise stable proteins during starvation. The effects of PolyP and ppGpp are related. The PolyP level in *E. coli* is dependent on the activities of polyphosphate kinase and exopolyphosphatases. Exopolyphosphatase is inhibited by ppGpp and, consequently, when ppGpp builds up in the cells, a decrease of exopolyphosphatase activity results in PolyP accumulation (Figure 7.7). The ppGpp-dependent increase of protein degradation can be explained by the increase of PolyP content in the cells, because PolyPs have an ability to bind ribosomal proteins, so making them available for Lon protease. How do PolyPs promote protein degradation? Gottesman and Maurizi (2001) proposed that PolyPs may provide the proximity of substrate protein and protease, or the Lon protease may recognize a motif in the degradable protein, which becomes exposed once the protein interacts with the PolyP. The complexes of PolyPs with many proteins were observed in cells, and probably some of them are specific (Rao and Kornberg, 1999; Reush, 1999a,b; Schröder et al., 1999).

The co-regulation of the synthesis of alginate, PolyP, GTP and ppGpp in *Pseudomonas aeruginosa* has been observed (Kim et al., 1998). The mutant lacking the regulatory protein AlgR2, which positively regulated nucleoside diphosphate kinase (NDK), had a low level of these compounds. This was restored by overexpression of AlgR2 or NDK genes. It was proposed that the production of alginate and the high level of PolyP under starvation were an attempt by the cells to synthesize PolyP as an energy reserve for further use and to secrete alginate outside the cells (Chakrabarty, 1998). This may be a mechanism to guard against continued accumulation of metabolically active nucleotide triphosphates (Chakrabarty, 1998).
Evidence for the participation of (p)ppGpp and PolyP-dependent systems in the regulation of development of prokaryotes with a complex life cycle, *Myxococcus coralloides* (Gonzales et al., 1989) and *Myxococcus xanthus* (Singler and Kaiser, 1995; Harris et al., 1998), has also been obtained.

Generation of high levels of (p)ppGpp in response to amino acid starvation in *E. coli* results in a significant accumulation of PolyP (Kuroda et al., 1997). This accumulation can be attributed to the inhibition by pppGpp and/or ppGpp of PolyP hydrolysis by exopolypophosphatase. PolyP accumulation under stress required high levels of ppGpp, independent of whether they are generated by RelA (active during stress response) or SpoT (expressed during Pi starvation) (Rao et al., 1998). Accumulation of PolyP requires the functional PHOB gene and higher levels of (p)ppGpp (Rao et al., 1998; Ault-Riche et al., 1998). In *E. coli*, the genes *ppk* and *ppx* are in the same operon, which results in a coordinated regulation of their activities (Rao et al., 1998).

Various mechanisms, providing the participation of PolyP in gene expression regulation processes, have been proposed (Figure 7.8). First, polyphosphate kinase may be involved in regulation of the level of nucleoside triphosphates and deoxynucleoside triphosphates, while this enzyme can convert GDP and other nucleoside diphosphates to nucleotide triphosphates using PolyP. Secondly, this enzyme may influence mRNA stability, regulating RNA degradation in degradosomes. Thirdly, PolyP is directly involved in the regulation of RNA polymerase expression and activity. Finally, the (p)ppGpp and PolyP metabolism and *rpoS* expression are closely interrelated. In addition, there are some genes which are regulated by ppGpp or PolyP, independent of the *rpoS* network.

It should be noted that different bacteria might have different predominant mechanisms of PolyP participation in survival under stress and in the stationary-growth phase, or other mechanisms that have not been studied yet. For instance, in *Helocobacter pilory* the pppGpp level does not rise as a result of amino acid starvation (Scoarughi et al., 1999). Completely sequenced genomes of several obligately parasitic organisms (*Treponema pallidum, Chlamydia species* and *Rickettsia prowazekii*), as well as the known archaea genomes, do not contain rel-like genes, and the role of ppGpp in these organisms may probably be diminished (Mittenhuber, 2001).

These recent data provide good evidence for the essential role of PolyPs in regulation of biochemical processes and the overcoming of stress and starvation by prokaryotic cells.

7.7.2 In Lower Eukaryotes

For eukaryotic microorganisms, the involvement of PolyPs in biochemical regulation under stress has also been observed. For example, the involvement of vacuolar PolyP in survival under osmotic or alkaline stress has been shown in algae and fungi. In the alga *Dunaliella salina*, alkalinization of the cytoplasm results in a massive hydrolysis of PolyP, resulting in pH stat. Various authors have suggested that the hydrolysis of PolyP provides the pH-stat mechanism to counterbalance the alkaline stress (Bental et al., 1990; Pick et al., 1990; Pick and Weis, 1991).

The role of PolyP as a buffer was demonstrated in *N. crassa* under osmotic stress where the hypoosmotic shock produced a rapid hydrolysis of the PolyP with an increase in the concentration of cytoplasmic phosphate (Yang et al., 1993).
Yeast showed an accumulation of PolyP₃ following PolyP hydrolysis induced by amines and basic amino acids (Greenfeld et al., 1987). The degradation of ‘NMR-observable’, probably vacuolar, PolyP to short-chain polymers in the cells of Chemostat-cultivated S. cerevisiae contributed to neutralizing the added alkalinity (Castro et al., 1995, 1999). In contrast, when the vacuolar vph1-1 mutant, lacking ‘NMR-visible’ PolyP, was subjected to alkalization, the absence of a vacuolar source of phosphate slowed re-acidification (Castro et al., 1999). Anaerobiosis resulted in the complete hydrolysis of PolyP to Pᵢ (Castro et al., 1995).
It was suggested that the accumulation of amines within vacuoles (in response to amine-induced alkaline stress) activates a specific exopolyphosphatase which hydrolyses long-chain PolyPs to PolyP₃ (Pick and Weis, 1991). This enzyme appears to be activated at neutral or mild alkaline pH levels and repressed at the physiological intravacuolar acidic pH level. To date, two enzymes, which could catalyse this process, have been purified. An exopolyphosphatase, which hydrolyses long-chain PolyPs but not PolyP₃, and has an optimal pH at 7–7.5, was purified from yeast vacuoles (Andreeva et al., 1998b). An endopolyphosphatase (Kumble and Kornberg, 1996) could also be involved in this process.

One of the possible ways for the involvement of PolyPs in stress overcoming and biochemical regulation is their interactions with the second messengers. In eukaryotes, second messengers such as phosphoinositides (Mitchell et al., 1996; Wera et al., 2001) and diadenosinetetra-, penta- and hexapolyphosphates (Kisselev et al., 1998) are probably interrelated with PolyPs by analogy with the (p)ppGpp and PolyP interactions in bacteria.

Diadenosine tetraphosphate was found to accumulate in yeast cells under stress caused by exposure to cadmium or heat shock (Baltzinger et al., 1986, Rubio-TeXeira et al., 2002). The diadenosine hexa- and pentaphosphates and hydrolases have an additional function in S. cerevisiae, namely, the efficient hydrolysis of diphosphorylated inositol polyphosphates (Safrany et al., 1999). Thus, the above second messengers may effectively interact with one another. In addition, their metabolism may be related to PolyP metabolism in some cases. The yeast exopolyphosphatase PPX1 is capable of hydrolysing adenosine–5′-tetraphosphate and guanosine–5′-tetraphosphate (Kulakovskaya et al., 1997; Guranowsky et al., 1998), while diadenosine–5′,5″′-P₁,P₄-tetraphosphate α,α-phosphorylase (Booth and Guidotti, 1995) may bind the metabolism of the above compounds and PolyP. In addition, the chloroplasts of the eukaryotic alga Chlamydomonas reinhardtii was found to possess a gene encoding a putative guanosine–3′,5′-bispyrophosphate (ppGpp) synthase–hydroladase (Kasai et al., 2002). This gene exhibited a marked similarity to eubacterial members of the RelA-SpoT family of proteins and the authors suggested that eubacterial stringent control mediated by ppGpp has been conserved during evolution of the chloroplast from a photosynthetic bacterial symbiont (Kasai et al., 2002). It is probable that some of the regulatory mechanisms in which PolyPs are involved may be similar in eubacteria and chloroplasts or the mitochondria of eukaryotes.

The participation of PolyPs in development processes and regulation of gene activity is, probably, one of the most important functions of these compounds in eukaryotic microorganisms. The mechanism of this involvement is as yet still little studied; however, many facts confirm this concept. The first data which provide evidence for the involvement of PolyPs in switching on and off large groups of genes were obtained for fungi. It was shown that during the process of sporulation in the fruiting bodies of the fungus Agaricus bisporus very large amounts of relatively low-molecular-weight PolyPs accumulate at the actual site of the basidia (Kritsky et al., 1965a,b). Significant changes in nuclear PolyPs were observed during this process. Degradation of high-molecular-weight PolyPs to low-molecular fragments in the nuclei during sporulation was observed in the fungi Agaricus bisporus, Neurospora crassa (Kritsky and Kulaev, 1963, Kritsky and Belozerskaya, 1968; Kritsky et al., 1965a,b, 1970, 1972) and Physarum polycephalum (Pilatus et al., 1989). The relationship between PolyPs and nucleic acids metabolism in the cells of lower eukaryotes was discovered many years ago, although the precise mechanisms of this relationship is still obscure. The utilizing of PolyP primarily for the biosynthesis of RNA was demonstrated
for the fungus *Aspergillus niger* (Kulaev and Belozersky, 1958; Mudd *et al.*, 1958; Stahl *et al.*, 1964). It was shown that PolyPs are utilized primarily for the biosynthesis of RNA in *Penicillium chrysogenum* (Kulaev *et al.*, 1959; Kritsky *et al.*, 1968) *Lenthius tigrinus* (Kritsky and Belozerskaya, 1968; Kritsky *et al.*, 1968). A clear correlation between the content of salt-soluble PolyPs and that of RNA was observed. The participation of PolyPs in nucleic acid metabolism was proposed to be connected with the consumption of the activated phosphorus of the PolyP for nucleic acid biosynthesis (Kulaev, 1979; Kulaev and Vagabov, 1983). In discussing the interaction of PolyP metabolism with that of nucleic acids in eukaryotic cells, it is pertinent to mention that PolyPs may also form complexes with RNA (Kulaev and Belozersky, 1958). PolyP$_{60}$ was found in DNA preparations from filamentous fungal species of *Colleotrichum* (Rodriguez, 1993).

The polyP content and polymerization degree have a intricate dynamic during culture growth in yeast and fungi (see details in Chapter 8). This dynamic correlates with the growth stage and indicates the interrelation of PolyP metabolism and culture development. In yeast, the double mutation in exopolyphosphatase PPX1 and endopolyphosphatase genes results in a diminished ability to survive in the stationary-growth phase (Sethuraman *et al.*, 2001). The above genes was concluded to be essential for stationary-phase adaptation in yeast (Sethuraman *et al.*, 2001).

One of the developmental processes in lower eukaryotes is antibiotic synthesis. Some of the data obtained indicated the interaction between PolyP metabolism and the above process (Kulaev and Vagabov, 1983). It was shown that the levels of PolyP (fractions PP1, PP2 and PP3) in the strain of *Penicillium chrysogenum* intensively producing penicillin were two to three times higher than those in the low-productive strain during the period of penicillin production (Telesnina *et al.*, 1985). In contrast, strains of *Tolypocladium sp.* differing in cyclosporine production levels were similar in their PolyP contents (Sotnikova *et al.*, 1990). The level of PolyP was lowered two- to threefold during the period of intensive growth and at the beginning of antibiotic synthesis (Sotnikova *et al.*, 1990). In *Fusidium coccineum*, the PolyP level was lower in the high-fusidic-acid-producing strain than that in the strain with a low production of the antibiotic (Navashin *et al.*, 1983). These authors proposed that PolyP was used as an energy source for antibiotic biosynthesis. Thus, while the mechanisms of the interactions of PolyP metabolism and antibiotics biosynthesis in eukaryotes are still unknown, the interactions between both processes probably depend on the microorganism species, culture conditions and P$_i$ content in the medium.

To summarize, in lower eukaryotes the participation of PolyPs in development processes, gene activity control and overcoming stress is confirmed at present by much indirect evidence and thus establishment of the background for such functions is one of the major future tasks in PolyP biochemistry.

7.8 The Functions of Polyphosphates in Higher Eukaryotes

The cells of higher eukaryotes possess PolyPs but in smaller amounts than those found in microorganisms. The main function of these biopolymers is probably their participation in regulatory processes.
The functions of polyphosphates in higher eukaryotes

Few data are available on the PolyP function in higher plants. PolyPs were first observed in maize roots (Vagabov and Kulaev, 1964), while Niemeyer studied PolyPs and their interactions with the inositol phosphate pools in plants (Niemeyer, 1975, 1976, 1999; Niemeyer and Selle, 1989). Some data on the dynamics of PolyPs during the development of cotton plants were obtained (Valikhyanov et al., 1980). It is probable that some plants can use extracellular PolyP as a phosphorus source (Igamnazarov and Valikhyanov, 1980).

Possibly, higher plants possess sufficient amounts of PolyPs only at specific development stages and in certain tissues, and investigation of their role is a difficult task. Genetic methods may be an effective tool for study of the influence of PolyP accumulation on plant cell metabolism. For example, it was demonstrated that the transformation of potato plants with the ppk gene from *E. coli* introduced a new phosphate pool in the chloroplasts of green tissues. PolyPs accumulated during leaf development from 0.06 mg P per g of dry biomass in juvenile leaves to 0.83 mg per g of dry biomass in old leaves and had an average chain length of around 18 residues. Leaves of transgenic plants contained less starch but higher concentrations of soluble sugars when compared to control plants (Van Voorthuysen et al., 2000).

As for animals, PolyPs were first found in their cells by Gabel and Thomas (1972). The role of PolyPs in animal cells is still little studied, but some important facts indicate their importance in development and regulatory processes.

Relatively high amounts of PolyPs were found in the freshwater sponge *Ephydatia muelleri*, particularly in the gemmules (Imsiecke et al., 1996). Germination and hatching of the gemmules were accompanied by a decrease (by 94 %) in the PolyP level and a rise in the exopolyphosphatase activity. An increase in the PolyP content and decrease in exopolyphosphatase activity also occurred during tissue regression, when the hatched sponges were exposed to polluted river water. Non-ionic organic compounds extracted from this water were identified as the contaminants responsible for the rise in the PolyP content of this organism (Imsiecke et al., 1996).

Recently, interest has grown in the study of PolyP functions in the cells of higher animals. PolyPs (*n* = 50–800) were found in the tissues of rodents (brain, liver, lungs and kidneys) and in practically all of the sub-cellular fractions, namely nuclei, mitochondria, plasma membranes and microsomes (Kumble and Kornberg, 1996). PolyPs were also found in human blood and bone tissue (Schröder et al., 1999, 2000). Age-dependence studies show that the amount of PolyP in rat brain increases dramatically after birth (Lorenz et al., 1997b). The maximal levels were found in 12-month-old animals. Thereafter, the total concentration of PolyPs decreases to about 50 %. This decrease in the total PolyP concentration is due to a decrease in the amount of insoluble long-chain PolyPs, as the amount of soluble long-chain PolyPs does not change significantly with ageing. In rat embryos and newborns, mainly soluble PolyPs could be detected. In rat liver, the age-dependent changes are less pronounced. Changes in the PolyP level were accompanied by those in exopolyphosphatase activity. The highest enzyme activities were found at low PolyP levels. Induction of apoptosis resulted in degradation of long PolyP chains to shorter ones, while the total PolyP content does not change significantly (Lorenz et al., 1997b).

The activity of endopolyphosphatase was also found in animal brain. An endopolyphosphatase had been partially purified from rat and bovine brain, where its abundance was about 10 times higher than that in their other tissues but less than a tenth of that in yeast; the end product of digestion of a partially purified brain enzyme is tripolyphosphate (Kumble and Kornberg, 1996).
The nuclei of animal cells contain PolyPs (Griffin et al., 1965; Mansurova et al., 1975a; Penniall and Griffin, 1984; Kumble and Kornberg, 1995). In the nuclei of rat liver, PolyP is related to the fraction of non-histone proteins (Kulaev and Vagabov, 1983; Offenbacher and Kline, 1984). PolyP may interact with DNA-histone binding in chromatin and this binding has been shown to inhibit the activity of some nuclear enzymes, including topoisomerases (Schröder et al., 1999). These data support the idea that PolyPs are involved in the regulation of chromatine functioning in animals.

One example of the probable regulatory function of PolyPs in animals is the ability of these polymers when added to culture media to enhance the proliferation of normal human fibroblast cells. PolyPs also enhanced the mitogenic activities of acidic fibroblast growth factor (FGF-1) and basic fibroblast growth factor (FGF-2). A physical interaction between PolyP and FGF-2 was observed, which stabilized this protein. Furthermore, PolyPs facilitated the FGF-2 binding to its cell surface receptors (Shiba et al., 2003).

PolyPs stimulated mammalian TOR, a kinase involved in the proliferation of mammary cancer cells (Wang et al., 2003).

The functions of PolyPs associated with their anionic nature were also retained. P$_i$ transported into the lysosomes of human fibroblasts incorporates high-polymer PolyPs synthesized in these organelles (Pisoni and Lindley, 1992). Lysosomes are a storage compartment for bioactive amines, and PolyPs might be able to form complexes with these compounds. A similar process of PolyP synthesis was also observed in granulocytes (Cowling and Birnboim, 1994).

Complexes of PolyP and PHB, similar to those in bacteria, were found in the membranes of the endoplasmic reticulum and mitochondria of animal cells (Reusch, 1989, 1999a, 2000; Reusch and Sadoff, 1988), which suggests their participation in the processes of transmembrane transfer. The most intriguing report was that the Ca$^{2+}$–ATPase purified from human erythrocytes contains PolyPs and PHBs and that the plasma membrane Ca$^{2+}$–ATPase may function as a polyphosphate kinase; this exhibits ATP–polyphosphate transferase and polyphosphate–ADP transferase activities. These findings suggest a novel supramolecular structure for the functional Ca$^{2+}$–ATPase and a new mechanism of ‘uphill’ Ca$^{2+}$ extrusion coupled with ATP hydrolysis (Reusch et al., 1997).

It was revealed that PolyPs possess antiviral activity by preventing the binding of a virus to a cell (Lorenz et al., 1997c). Human blood plasma, serum, peripheral blood mononuclear cells and erythrocytes contain significant amounts of PolyPs (ranging from 53 to 116 μM in terms of phosphate residues). At higher concentrations, the PolyPs may exhibit cytotoxic and antiviral activities. Sodium tetrapolyphosphate and longer polymers, with average chain lengths of 15, 34 and 91 phosphate residues, significantly inhibited the infection of cells by the human immunodeficiency virus type 1 (HIV-1), \textit{in vitro} at concentrations higher than or equal to 33.3 μg ml$^{-1}$, whereas PolyP$_3$ was ineffective. Over the tested concentration range, these compounds had no effect on cell growth. PolyPs with average chain lengths of 15 and 34 P$_i$ residues, but not PolyP$_3$ and PolyP$_4$, also inhibited HIV-1-induced syncytium formation at a concentration of 160 μg ml$^{-1}$. The results obtained in the syncytium assay and cell–virus binding experiments indicate that the anti-HIV effect of these non-toxic polyanions may be caused by the binding of these compounds to both the host cell surface and the virus, thereby inhibiting attachment of the virus (Lorenz et al., 1997c). Significant amounts of PolyPs and of exopolyphosphatase activity were detected in human-mandible-derived osteoblast-like cells. The amounts of both soluble and insoluble long-chain PolyPs in unstimulated osteoblast-like cells were higher than in human gingival cells, erythrocytes,
peripheral blood mononuclear cells and human blood plasma. The cellular content of PolyPs in osteoblast-like cells significantly decreased after the combined treatment of cells with stimulators of osteoblast proliferation and differentiation (Leyhausen et al., 1998; Schröder et al., 1999, 2000). These authors assume that PolyPs may be involved in the modulation of the mineralization process in bone tissue.

PolyP$_3$ was found to be a phosphodonor for the phosphorylation of some proteins in rat liver microsomes (Tsutsui, 1986) and for nucleoside kinases, in particular human deoxyribo- nucleoside kinases (Krawiec et al., 2003). This gives an additional possibility for the involvement of PolyPs in the regulatory processes in animal cells.

Thus, in spite of the fact that animal cells, probably with the exception of bone tissue cells, do not need PolyPs as phosphate reserves, the functions of these biopolymers are still
quite significant. This is confirmed by the presence of such compounds in nearly all tissues and organs.

In conclusion, it should be noted that PolyPs are polyfunctional compounds. Their most important functions are as follows: phosphate and energy reservation, sequestration and storage of cations, formation of membrane channels, participation in phosphate transport, involvement in cell-envelope formation and function, gene activity control, regulation of enzyme activities, and, as a result, an important role in stress response and stationary-phase adaptation.

The functions of PolyPs have changed greatly during the evolution of living organisms. Figures 7.9–7.11 summarize, respectively, data on PolyP functions in prokaryotes, lower eukaryotes and animals. In microbial cells, they play a significant role, increasing cell resistance to unfavourable environmental conditions and regulating different biochemical
The functions of polyphosphates in higher eukaryotes

In higher eukaryotes, the regulatory functions predominate. There is a great difference between prokaryotes and eukaryotes in their PolyP-metabolizing enzymes (see Chapter 6). Eukaryotes do not possess some key prokaryotic enzymes but have developed some new PolyP-metabolizing enzymes lacking in prokaryotes. The synthesis and degradation of PolyPs in each specialized organelle and compartment of eukaryotic cells are mediated by different sets of enzymes. This is consistent with the endosymbiotic hypothesis of eukaryotic cell origin. Despite the great differences in PolyP metabolism and functions in different living organisms, participation in the regulatory processes in the cell is observed for these biopolymers in organisms belonging to different stages of evolution.

Figure 7.11 Functions of PolyPs in animals.
8

THE PECULIARITIES OF POLYPHOSPHATE METABOLISM IN DIFFERENT ORGANISMS

It has become clear in recent years that the metabolism of PolyPs in different organisms, although partially involving similar pathways, nevertheless possesses certain characteristic features. In this section, we shall consider the principal features of the more typical aspects of PolyP metabolism in those organisms, which have been subjected to the closest and most thorough examination, and for which it is possible to depict, at least in outline, the general features of PolyP metabolism. Special attention will be paid to the particularly complex, and as yet little investigated, problem of the intracellular control of PolyP metabolism in various groups of organisms. In this part of the review, therefore, we shall consider some specialized aspects of PolyP biochemistry.

8.1 Escherichia coli

8.1.1 The Dynamics of Polyphosphates under Culture Growth

PolyP metabolism in E. coli is interesting first of all due to the very intensive investigations of its phosphorus metabolism both in the biochemical and genetic aspects.

The earliest work with this bacterium showed that PolyPs occurred in it in extremely low amounts, if at all, and were present not continually and often under specific conditions, usually under growth limitation by some nutrient sources. Indeed, study of the dynamics of PolyP accumulation during the growth of the wild-type strain E. coli K12 on a mineral
Figure 8.1 PolyP and PolyP-metabolizing enzymes during the growth of E. coli K-12: (1) biomass; (2) PolyP; (3) intracellular P; (4) exogenous P; (5) exopolyphosphatase; (6) triopolyphosphatase; (7) alkaline phosphatase; (8) polyphosphate kinase; (9) 1,3-diphosphoglycerate:polyphosphate phosphotransferase (Nesmeyanova et al., 1973).

medium supported such a suggestion, simultaneously closing the question of PolyP occurrence in E. coli (Nesmeyanova et al., 1973, 1974a,b, 1975a,b; Nesmeyanova, 2000). A high-molecular-weight acid-insoluble PolyP was found in this bacterium and identified by a specific product of its partial acidic hydrolysis, i.e. cyclotriphosphate, using the method of Thilo and Wieker (1957). The highest amount of this high-polymer PolyP, reaching 0.2–0.4 % of dry bacterial weight (in yeast, its amount may reach 20 %), occurs in the cells of this bacterium only at the end of the latent and the beginning of the logarithmic growth phase (Nesmeyanova et al., 1973). When the culture passes to exponential growth, the level of intracellular PolyP dramatically decreases 5–10-fold (Figure 8.1). Thus, the accumulation of PolyP precedes intensive culture growth, and then it is utilized by the growing cells (Nesmeyanova et al., 1973).

The accumulation of PolyPs in cells results from two processes: synthesis and utilization of PolyP. The dynamics of the known PolyP-synthesizing enzymes, i.e. polyphosphate kinase and 1,3-diphosphoglycerol-polyphosphate phosphotransferase, showed that these enzyme activities weakly correlate with the dynamics of PolyP accumulation under standard growth conditions (see Figure 8.1). The main peak of polyphosphate kinase activity was
observed, for instance, during the stationary culture growth, when the content of PolyP in the cells significantly decreased. On the contrary, the activity of an enzyme of PolyP degradation, exopolyphosphatase, directly correlated with PolyP accumulation and with the activity of the alkaline phosphatase (non-specific phosphohydrolase) of *E. coli*.

8.1.2 The Effects of Pi Limitation and Excess

Similar dynamics of the PolyP content in *E. coli* cells was observed under external Pi limitation and excess (Figure 8.2). The culture growth continues during Pi deprivation, but less rapidly than in a Pi-containing medium. In a medium without Pi, there was a greater consumption of PolyP. The level of intracellular orthophosphate actually remained the same, supporting the regulatory role of PolyP in the maintenance of the phosphate level in the cell (Figure 8.2(a)). Rapid growth of the culture on a complete PolyP-containing medium was also accompanied by a fall in the level of both phosphorus compounds in the cells. In the final analysis, however, the level of Pi and PolyP remained higher than in a deprived culture (Nesmeyanova *et al.*, 1974a; Nesmeyanova, 2000).

In many organisms, the addition of Pi to a culture previously deprived of phosphorus results in a rapid accumulation of PolyP to an extent many times exceeding the level which is characteristic of normal growth on a complete medium. This phenomenon is called ‘hypercompensation’ or ‘phosphate overplus’. In *E. coli*, this effect was not found. The addition of Pi to a starved culture resulted in a rapid restoration of biomass accumulation.
Figure 8.3 Effects of exogenous P_i on PolyP-metabolizing enzymes in E. coli: (a) deficiency of exogenous P_i; (b) excess of exogenous P_i: (1) alkaline phosphatase; (2) tripolyphosphatase; (3) exopolyphosphatase; (4) polyphosphate kinase; (5) 1,3-diphosphoglycerate:polyphosphate phosphotransferase (Nesmeyanova et al., 1974b).

As regards the PolyP and P_i levels, the only thing observed was a replenishment of the reserves of PolyP and P_i to the levels typical of those in cells growing on a complete medium with P_i (Nesmeyanova et al., 1973, 1974a,b).

The regulation of some enzymes of PolyP metabolism in E. coli by exogenous P_i was studied first by Nesmeyanova et al. (1973, 1974a,b, 1975a,b). Both alkaline phosphatase and exopolyphosphatase appeared to be co-regulated by P_i (Figure 8.3). Their activities appreciably increased under P_i starvation, whereas polyphosphate kinase and 1,3-diphosphoglycerate-PolyP phosphotransferase activities did not depend on the content of P_i in the medium. The greatest derepression was observed in cells during exponential and even latent growth under phosphate starvation. Cells from the stationary growth phase actually showed no de-repression of exopolyphosphatase under the same conditions (Nesmeyanova et al., 1974a). If P_i was added to the medium during the synthesis of phosphohydrolases, the latter completely stopped (Figure 8.4). It is evident that the exopolyphosphatase in E. coli is strictly regulated by exogenous P_i. Obviously, this enzyme plays the leading role in PolyP utilization under phosphate starvation, which proceeds much quicker than on the medium with P_i. Other authors also observed that the addition of excess phosphate to P_i-starved E. coli cells resulted in decreased exopolyphosphatase activity, increased polyphosphate kinase activity and accumulation of PolyP (Sharfstein and Keasling, 1994).

It should be noted that E. coli exopolyphosphatase is a surface protein of the cytoplasmic membrane, localized on its periplasmic side (Nesmeyanova et al., 1975b; 1976). In contrast
Escherichia coli

Figure 8.4 Effects of addition of P$_i$ to a previously starved culture on the activity of phosphorus-metabolizing enzymes in E. coli: (1) alkaline phosphatase; (2) exopolyphosphatase; (3) tripolyphosphatase; (4) 1,3-DPGA-polyphosphate phosphotransferase; (5) polyphosphate kinase (all in an P$_i$-free medium); (1’–5’) with the addition of P$_i$. The time of P$_i$ addition is shown by the arrows (Nesmeyanova et al., 1974a).

to alkaline phosphatase, which is completely released from cells during cell wall lysis, exopolyphosphatase remains membrane-bound and is released from the membrane only after a long washing with buffer. The strength of its binding with the membrane depends on the presence of P$_i$ in the medium. Under phosphate starvation, i.e. under de-repression of the enzyme, this binding is weaker and the enzyme is more easily released into the periplasm (Nesmeyanova et al., 1975b).

The wild-type E. coli utilized PolyP with a chain length of 100 phosphate residues as a sole source of phosphate in the growth medium (Rao and Torriani, 1988). The mutation in the phoA (alkaline phosphatase) gene prevented growth on this medium, while the mutation in the gene encoding the periplasmic acid phosphatase did nor affect PolyP utilization (Rao and Torriani, 1988).

8.1.3 The Effects of Mutations on Polyphosphate Levels and Polyphosphate-Metabolizing Enzyme Activities

First, polyphosphate kinase is the main enzyme of PolyP synthesis in E. coli and the ppk1-deficient mutants have virtually no PolyP content (Kornberg, 1995, 1999; Kornberg et al., 1999). Overexpression of ppk1 results in a high level of intracellular PolyP (Ohtake et al., 1994; Keasling et al., 1998). Overexpression of both ppk and ppx results in a lower PolyP level and excretion of P$_i$ from the cells (Keasling et al., 1998). A strain deficient
in exopolypophatase (ppx) has more PolyP than the parent strain (Keasling and Hupf, 1996).

The *ppk1* gene has many pleiotrophic effects on *E. coli* viability and cell functions (Kornberg, 1995, 1999; Kornberg *et al.*, 1999), which were briefly described earlier in Chapter 7.

In *E. coli*, a Pho regulon controls the biosynthesis of a number of enzymes participating in phosphorus metabolism and other proteins (Torriani-Gorini, 1994; Wanner, 1994). A very low level of P_i in the medium induces the Pho regulon, comprising the Pst-pathway of using P_i and the PhoB regulator of response, which induces the genes of proteins of this regulon also participating in phosphorus metabolism.

One of the first attempts to elucidate the interrelations of the Pho regulon and PolyP metabolism was made by Nesmeyanova *et al.* (1975a). The effect of mutation of the regulatory gene *phoR*, resulting in a non-inducible synthesis of proteins of the Pho regulon, was studied. Neither alkaline phosphatase nor exopolypophatase were induced under phosphate starvation in this mutant strain, indicating that exopolypophatase was co-regulated with alkaline phosphatase under the control of the same regulatory system.

The *phoU* mutant is constitutive for alkaline phosphatase and is able to synthesize five times more PolyP than the parent strain under anaerobiosis in a rich medium (Rao *et al.*, 1985). Later, the accumulation of a high level of PolyP in the *phoU* mutant (~ 100-fold higher than in the parent strain) was confirmed (Morohoshi *et al.*, 2002). This mutant was able to remove fourfold more P_i from the medium than the parent strain. By using this mutant and a combined method of chemical extraction and ^31_P NMR spectroscopy, the anaerobiosis-induced PolyP accumulation in *E. coli* was studied (Rao *et al.*, 1985). Under these conditions, the total PolyP amount was maximal at the early stationary phase of growth. Both trichloroacetic acid- and NAOH-soluble PolyPs were found in the cells. The acid-soluble fraction contained polymer of about 20 ± 5 phosphate residues, whereas the alkali-soluble fraction had a higher chain length. The ^31_P NMR spectroscopic analysis revealed PolyP of more than 200 residues (Rao *et al.*, 1985). It was observed that under these experimental conditions *E. coli* cells accumulate at first acid-soluble low molecular-weight PolyP, and high-molecular-weight PolyP is synthesized once the growth has ceased (Rao *et al.*, 1985).

High levels of PolyP accumulation were obtained by increasing the dosage of *E. coli* genes encoding polyphosphate kinase (ppk1), acetate kinase and phosphate-inducible transport systems (*PSTS, PSTC, PSTA, and PSTB*), and by genetic inactivation of *ppx* encoding exopolypophatase (Kato *et al.*, 1993a; Hardoyo *et al.*, 1994; Ohtake *et al.*, 1994). All these data support the idea that the massive accumulation of PolyP in *E. coli* may be obtained by genetic modification in the regulatory systems, which provides P_i uptake and its regulation in this bacterium.

PhoB, the response regulator, turns on several genes, among them alkaline phosphatase and the proteins involved in P_i uptake. Pho-regulon mutants affected in PhoB synthesis were tested for PolyP accumulation in a minimal medium containing low levels of P_i (0.1 mM) and amino acids (2 µg ml⁻¹) (Rao and Kornberg, 1999). A large amount of PolyP (48 nmol per mg of protein) accumulated in wild-type cells under these conditions. The mutants lacking PhoB accumulated low levels of PolyP (0.3–1.9 nmol per mg of protein). Inactivation of the protein kinases PhoR and CreC, which activate PhoB (Wanner, 1995), led to a lower level of PolyP (0.1 nmol per mg of protein). The mutants with constitutive expression of the Pho regulon or *phoB* mutants with multicopy *phoB* plasmid accumulated PolyPs to a level comparable with those in wild-type cells (Rao and Kornberg, 1999).
Pseudomonas aeruginosa

It should be noted that the exopolyporphatase gene of E. coli, i.e., ppx, was found ‘downstream’ of the gene for polyphosphate kinase ppk1 (Akiyama et al., 1993). Transcription of the ppx gene depended on the ppk1 promoters, indicating a single operon of ppk1 and ppx (Akiyama et al., 1993). This proposes a coordinate regulation of these enzymes. The fact that one of the promoters has a homology with the Pho box indicated that PolyP metabolism might be regulated by P_i. The effects of some mutations indicated above support this suggestion.

The effects of mutations and overexpression of ppk1 and ppx were studied by Keasling and co-workers (Keasling et al., 1998, 2000; Sharfstein et al., 1996; Van Dien et al., 1997; Van Dien and Keasling, 1998). If the PolyP operon of E. coli was overexpressed on a high-copy plasmid under the control of its native promoter, the ppk activity increased during phosphate starvation and dropped after the P_i shift, while ppx activity was the highest when P_i was in surplus. Thus, in such a transformant, the Pho regulon was probably not involved in the expression of ppk and ppx, while utilization of PolyP during starvation and its partial replenishment after the P_i shift was retained (Sharfstein et al., 1996; Van Dien et al., 1997; Keasling et al., 1998; Van Dien and Keasling, 1998). Thus, the interaction of the genes directly involved in PolyP metabolism and the Pho regulon is very complicated and needs further investigation. A mathematical model was proposed to study the multiple aspects of the phosphate-starvation response of E. coli (Van Dien and Keasling, 1998).

8.1.4 The Effects of Nutrition Deficiency and Environmental Stress

The influence of nutrition limitation and stress conditions on the PolyP content in E. coli was studied by Kornberg and co-workers and described in detail in a number of reviews (Kornberg, 1995, 1999; Rao and Kornberg, 1999; Kornberg et al., 1999), and earlier in Chapter 7. Here, we will point out only the most important facts. First, E. coli, subjected to nutritional or osmotic stress in a rich medium or to nitrogen exhaustion, had a large and dynamic accumulation of PolyP (Rao and Kornberg, 1996; Kuroda et al., 1997; Rao et al., 1998; Ault-Riche et al., 1998). E. coli accumulated large amounts of PolyPs in media deficient in both P_i and amino acids. For example, Figure 8.5 shows PolyP accumulation in the presence of serine hydroxamate inducing amino acid starvation (Kuroda et al., 1997). This accumulation is explained by the high level of ppGpp under these conditions and the inhibition of PolyP hydrolysis by this compound (Kuroda et al., 1997). The accumulation of PolyPs under stresse seems to be a reaction for overcoming the unfavourable growth conditions.

Based on the available data, a tentative model (Figure 8.6) of the mechanisms responsible for PolyP accumulation in E. coli has been proposed (Ault-Riche et al., 1998; Rao and Kornberg, 1999).

8.2 Pseudomonas aeruginosa

In Pseudomonas aeruginosa, a specific regulation of PolyP accumulation by the regulatory protein AlgR2 was revealed. This protein positively regulated the production of alginate,
Figure 8.5 PolyP accumulation, and polyphosphate kinase (PPK) and exopolyphosphatase (PPX) activities, under stringent conditions. *E. coli* MG1655 was grown on a MOPS medium containing 0.4 mM Pi. At A_{540} near 0.2, serine hydroxamate (SHX) was added (0.5 mg ml\(^{-1}\)) for induction of amino acid starvation and accumulation of (p)ppGpp. Symbols represent with (□) and without (♦) serine hydroxamate: units of PPK and PPX in (b) are 1 nmol P\(_i\) min\(^{-1}\) (Kuroda *et al.*, 1997). Reproduced with permission from Kuroda, A., Murphy, H., Cashel, M. and Kornberg, A., *J. Biol. Chem.*, 272(34), 21240–21243 (1997). Copyright (1997) American Society for Biochemistry and Molecular Biology.

Figure 8.6 Model for stress-induced polyP accumulation in *E. coli*. NtrC (a member of the signal cascade for nitrogen metabolism), together with RpoS and PhoB, is needed for polyP accumulation in response to nitrogen limitation. Involvement of a ‘sigma factor’ (RpoS) implies activation of an additional factor (‘X’) which could lead to PolyP accumulation by direct interaction with PolyP, inhibition of PPX, stimulation of PPK, or a combination of all three. Under nutrient limitation, ppGpp accumulated by RelA and SpoT actions, can lead to PolyP accumulation by PPX inhibition and/or RpoS activation. Failure to accumulate PolyP, even when ppGpp and RpoS levels are high (as in carbon starvation), implies the presence of additional regulator(s). In addition, osmotic stress triggers PolyP accumulation through a mechanism that does not involve EnvZ, the osmotic sensor (Ault-Riche *et al.*, 1998; Rao and Kornberg, 1999).
Figure 8.7 Growth and PolyP accumulation by the *Pseudomonas aeruginosa* strain 8830 in L broth (Kim *et al.*, 1998).

Figure 8.8 PolyP accumulation in *Pseudomonas aeruginosa*, with accumulation induced in a low-phosphate MOPS medium by the addition of serine hydroxamate: (1) algR2 mutant complemented with plasmid GWS95 with the ndk gene, encoding the nucleoside diphosphate kinase; (2) algR2 mutant (Kim *et al.*, 1998).

GTP, ppGpp and PolyP (Kim *et al.*, 1998). During the growth in L broth, the bulk of PolyP accumulation in a stable mucoid alginate-producing strain took place at the onset of the stationary phase and continued into the late stationary phase (Figure 8.7). This strain accumulated a large amount of PolyP under stringent response evoked by the addition of serine hydroxamate (Figure 8.8). However, the non-mucoid mutant with AlgR2 deficiency accumulated about 10% as much PolyP under similar conditions (Kim *et al.*, 1998). Thus, the genetic switch that turns on alginate synthesis in *Pseudomonas aeruginosa* also turns on PolyP synthesis. A hyperexpression of the nucleotide phosphate kinase (NDK) gene
restores alginate, GTP, ppGpp and PolyP synthesis (see Figure 8.8) in AlgR2 mutants (Kim et al., 1998).

The *ppk* (Ishige et al., 1998; Zago et al., 1999) and *ppx* (Miyake et al., 1999; Zago et al., 1999) genes of *P. aeruginosa* were cloned. In contrast to *E. coli*, where the *ppx* and *ppk* genes are organized in an operon, in *P. aeruginosa* *ppx* is located in the opposite direction from the *ppk* gene and therefore they do not constitute an operon (Miyake et al., 1999; Zago et al., 1999). Thus, the independent regulation of *ppk* and *ppx* in this bacterium may explain the high level of PolyP, since it is possible to regulate the exopolyphosphatase level independently of the polyphosphate kinase level. No coregulation between the *ppk* and *ppx* promoters has been demonstrated in response to osmotic shock and oxidative stress (Zago et al., 1999). It was proposed that PolyP accumulation in *P. aeruginosa* is regulated at the enzymatic level through *ppx* activity inhibition by the stress response molecules of ppGpp without any modulation of the transcription rate of these two genes (Kim et al., 1998; Zago et al., 1999).

After *ppk* inactivation, the knockout mutants show no growth defects when compared with the parent strain. One of the remarkable defects in these mutants was the loss of motility (Rashid and Kornberg, 2000; Rashid et al., 2000a,b). A low-residual polyphosphate kinase activity was detected in these mutants (Zago et al., 1999) and attributed to the activity of the *ppk* gene (Zhang et al., 2002). However, one cannot exclude the existence of other pathways of PolyP synthesis in this bacterium.

8.3 *Acinetobacter*

PolyP metabolism has been intensively studied in *Acinetobacter*, because this organism may be responsible for enhanced biological phosphorus removal (EBPR) at many wastewater treatment plants and serves as a good model organism for developing molecular techniques to characterize metabolism and genetic control in potential EBPR organisms. The ability of this organism to accumulate PolyP and the peculiarities of this process have been effectively studied (Deinema et al., 1980, 1985; Van Groenestijn et al., 1989; Bonting et al., 1991, 1993a,b; Van Veen et al., 1994; Geissdorfer et al., 1998). The PolyP metabolism of these bacteria has been described in detail in many reviews, for example, Kortstee and Van Veen (1999) and Kortstee et al. (2000). A number of *Acinetobacter* species have been isolated, and many of them accumulate large amounts of PolyP under certain conditions (Vasiliadis et al., 1990; Kim et al., 1997; Gavigan et al., 1999).

Polyphosphate kinase is important for PolyP metabolism in *Acinetobacter* (Van Groenestijn et al., 1989). The *ppk* gene from the *Acinetobacter* sp. strain ADP1 was cloned (Geissdörf er et al., 1998) and the polyphosphate kinase was purified and characterized (Trelstad et al., 1999). The induction of *ppk* transcription by P\textsubscript{i} starvation was revealed (Gavigan et al., 1999). The polyphosphate kinase showed an interesting behaviour when the *Acinetobacter* cultures were subjected to a cycle of P\textsubscript{i} starvation and surplus (Kortstee and Van Veen, 1999). Although the *ppk* gene was strongly induced under P\textsubscript{i}-limited conditions, the net PolyP-synthesis activity declined and the PolyP levels became almost negligible. In addition, a strong PolyP-degrading activity, which seemed to be due to the presence of exopolyphosphatase but not the reverse work of polyphosphate kinase, was detected in cultures grown under low-P\textsubscript{i} conditions. The exopolyphosphatase and AMP–PolyP
phosphotransferase activities declined upon the addition of P_i, while both the PolyP-synthesis activities and PolyP levels rose. Indeed, under most conditions the *Acinetobacter* polyphosphate kinase works poorly in reverse. If polyphosphate kinase does not work (or works poorly) in reverse \textit{in vivo}, then the cell would be forced to use exopolyphosphatase and the phosphate–inorganic (Pit) system to recover energy from the PolyP (Kortstee et al., 2000). It was suggested that the formation of PolyP-producing enzymes is linked to the formation of PolyP-degrading enzymes. Thus, the same conditions (here, P_i starvation) which trigger the induction of exopolyphosphatase lead to the induction of polyphosphate kinase. When the conditions change (e.g. P_i is added), polyphosphate kinase is ready and available to form PolyP. This type of regulation could also occur with other nutritional stresses, such as carbon starvation to surplus and anaerobic to aerobic shifts, which occur in EBPR systems. When high-phosphate-grown cells of the strictly aerobic *A. johnsonii* were incubated anaerobically, their PolyP content was degraded and P_i was excreted. The bacterium have two enzymes catalysing PolyP degradation, i.e. polyphosphate:AMP phosphotransferase and exopolyphosphatase (Kortstee et al., 2000). In *A. johnsonii*, PolyP serves as an energy source during anaerobiosis by (i) direct synthesis of ATP via the polyphosphate:AMP phosphotransferase/adenylate kinase pathway, and (ii) generation of a proton motive force by the coupled excretion of MeHPO$_4$ and H$^+$. Exopolyphosphatase may enhance the latter energy recycling mechanism by providing the efflux process with a continuous supply of P_i and divalent metal cations (Kortstee et al., 2000).

8.4 Aerobacter aerogenes (Klebsiella aerogenes)

Aerobacter aerogenes (Klebsiella aerogenes) does not accumulate PolyPs in a sufficient amount under normal growth conditions but sometimes begins to accumulate PolyPs under unfavourable growth conditions (Smith et al., 1954). A detailed investigation has been carried out into the effects of different conditions and growth phases on the PolyP content in this organism (Wilkinson and Duguid, 1960). Quite a substantial accumulation of PolyP occurred at pH 4.5 with sulfur deficiency, after P_i had been added to the phosphorus-starved culture. For PolyP accumulation by this bacterium, in addition to the P_i and energy source, the presence of K^+ and Mg$^{2+}$ ions in the culture medium was essential. The interrelation between PolyP and nucleic acid metabolism has also been observed (Wilkinson and Duguid, 1960). The total amount of PolyP in the cells increased when the growth and nucleic acid synthesis ceased, but the accumulated PolyP (in the form of volutin granules) disappeared after the growth had been resumed.

The fundamental work on PolyP metabolism in *K. aerogenes* has been carried out by Harold and co-workers (Harold, 1963a,b, 1964, 1966; Harold and Harold, 1963, 1965; Harold and Sylvan, 1963). It was shown that the effect of growth conditions on PolyP metabolism is mediated by two entirely different mechanisms.

The first mechanism was realized when the growth was ceased by nutrient deprivation or stress conditions. For example, Figure 8.9(a) shows the gradual PolyP accumulation during sulfur deprivation, while the growth and nucleic acid biosynthesis are suppressed (Harold, 1966). A similar observation was made (Harold, 1963b) during the examination of auxotrophic mutants, which required uracil or methionine for normal growth. PolyP was accumulated in the culture medium in the absence of these components, while on addition
136 Peculiarities of polyphosphate metabolism

Figure 8.9 Accumulation of PolyPs in *Aerobacter aerogenes* (Harold, 1966): (a) sulfur deprivation, cells placed at 0 h in a Pi-free medium; (b) phosphate overplus, cells placed at 0 h in a Pi-free medium, with Pi was added after 4 h: (1) PolyP; (2) polyphosphate kinase activity; (3) exopolyphosphatase activity.

of the latter the growth was restored and PolyP was utilized for biosynthetic processes. It is probable that such mechanisms are realized by the same way as in other bacteria by the ppGpp and rpoS controlling genes (see earlier in Chapter 7).

In contrast to *E. coli*, *K. aerogenes* exhibits rapid and extensive PolyP accumulation (known as ‘PolyP overplus’) when Pi is added to cells previously subjected to Pi starvation (Harold, 1966). The changes in PolyP content, polyphosphate kinase and exopolyphosphatase activities under phosphate overplus are presented in Figure 8.9(b). It was shown that the absence of Pi in the medium de-repressed the polyphosphate kinase (Harold, 1964; Harold and Harold, 1963, 1965).

The mutant, which was devoid of polyphosphate kinase, had no PolyP accumulation independent of the growth conditions (Harold, 1964). Later, using specific gene constructions with a cloned ppk gene, it was confirmed that in *K. aerogenes*, as in *E. coli*, polyphosphate kinase is responsible for the synthesis of the most part of PolyP and for PolyP overplus (Kato *et al.*, 1993b; Ohtake *et al.*, 1999; Kuroda and Ohtake, 2000). A ppk mutant of *K. aerogenes* showed no PolyP overplus. Like the *E. coli* ppk-ppx operon, the ppx gene is located immediately ‘downstream’ of the ppk gene (Kato *et al.*, 1993b). As expected, the polyphosphate kinase activity increased in response to Pi starvation and decreased upon addition of Pi. However, unlike polyphosphate kinase, the exopolyphosphatase activity did not increase but rather slightly decreased under conditions of Pi starvation, although the ppx mRNA was induced (Kuroda and Ohtake, 2000). Earlier, it had been shown that PolyP degradation was completely inhibited in the mutant without exopolyphosphatase (Harold, 1966).
Harold and Harold (1963, 1965) also obtained mutants with defects in the regulation of phosphorus metabolism. One of them could not de-repress the PolyP-metabolizing enzymes by Pi deprivation and did not display phosphate overplus, while the other had these enzymes constitutively de-repressed and accumulated PolyP during the exponential phase (Harold and Harold, 1965). Later it was established that there is a putative Pho box in the promoter region of the \(K. aerogenes \) \(ppk-ppx \) operon (Kato et al., 1993b; Kuroda and Ohtake, 2000). Unlike the \(E. coli \) \(ppk-ppx \) operon, the \(K. aerogenes \) \(ppk-ppx \) operon seems to be under a stronger control of the PhoB and PhoR proteins (Kato et al., 1993b). The existence of the PolyP operon in this bacterium indicates that both increased PolyP synthesis and decreased PolyP degradation are responsible for regulation of the PolyP content in \(K. aerogenes \).

8.5 Azotobacter

PolyP metabolism in several species of \(Azotobacter \) has been investigated by Zaitseva and co-workers (Zaitseva and Belozersky, 1958, 1960; Zaitseva and Li Tszyun-in, 1961; Zaitseva and Frolova, 1961; Zaitseva et al., 1959, 1960a,b, 1961). These investigations were initially concerned with the changes in PolyP content during the development of cultures of various species of \(Azotobacter \). It was shown that, as in \(E. coli \), acid-insoluble PolyPs accumulated during the latent phase of development and was subsequently utilized actively during the exponential growth of the culture. In the case of \(Azotobacter agile \), it disappeared completely at this growth stage, reappearing only in the stationary phase. Acid-insoluble PolyPs accumulated in the early stationary phase, followed later by accumulation of acid-soluble PolyPs (Zaitseva and Belozersky, 1958; Zaitseva et al., 1959, 1960a,b). The behaviour of PolyPs in a synchronized culture of \(Azotobacter \) was also studied (Zaitseva et al., 1961). It was revealed that acid-insoluble PolyP attained its highest level in synchronously growing cells immediately prior to the onset of cell division, and during cell division it degraded to acid-soluble PolyP and then to \(P_i \). These results indicate possible participation of PolyPs in cell-cycle regulation.

The dependence of PolyP metabolism in \(Azotobacter \) on the nutrient medium composition was investigated. The greatest interest was connected with possible participation of PolyPs in nitrogen fixation. However, no specific features were observed, which could indicate a direct participation of PolyPs in this process. In a medium containing ammonium salts, PolyPs accumulated in larger amounts than under nitrogen-fixation conditions or in the absence of a nitrogen source in the medium. The inhibitory effect of \(Ca^{2+} \) ions on both nitrogen fixation and PolyP accumulation was established (Esposito and Wilson, 1956; Zaitseva et al., 1960b). However, Zaitzeva et al. (1960b) showed that these two phenomena were not directly related and that PolyP did not provide the source of phosphorus and energy in nitrogen fixation. It was revealed that a high \(Ca^{2+} \) concentration had an inhibitory effect on glycolitic phosphorylation, which was the common energy source for both processes in \(Azotobacter \).

In \(Azotobacter \), the main enzyme of PolyP metabolism was shown to be polyphosphate kinase (Zaitseva and Belozersky, 1958, 1960), which was capable of PolyP synthesis and of a reverse reaction. This enzyme was isolated and purified to a considerable extent (Zaitseva and Belozersky, 1960).
8.6 Cyanobacteria (Blue–Green Algae) and other Photosynthetic Bacteria

The great interest in PolyP metabolism in Cyanobacteria is connected with the ability of PolyPs to grow rapidly under P\textsubscript{i} and heavy metal excesses in the water. In many studies, special attention was paid to a possible use of cyanobacteria as assimilators of substantial amounts of phosphate in the form of PolyP. This problem arose from severe pollution of inland waters with various detergents, among which PolyP\textsubscript{3} is the most abundant pollutant.

It should be noted that an important contribution to the study of PolyP metabolism in cyanobacteria was made by Jensen and co-workers (Jensen, 1968, 1969; Jensen and Sicko, 1974; Sicko-Goad et al., 1975; Sicko-Goad and Jensen, 1976; Lawry and Jensen, 1979; Baxter and Jensen, 1980a,b). In these experiments, a special emphasis was laid on the accumulation of PolyP granules by cyanobacteria under conditions similar to those of inland waters. Normally, the conditions of phosphorus and sulfur starvation occur in these waters. When large amounts of industrial and domestic detergents enter inland waters, an intensive bloom of cyanobacteria occurs, leading to contamination of vast water reservoirs.

Using electron microscopy with the cyanobacteria Nostoc puriforme (Jensen, 1968), Plectonema boryanum (Jensen, 1969; Jensen and Sicko, 1974; Sicko-Goad et al., 1975) and Anacystis nidulans (Lawry and Jensen, 1979), Jensen and his colleagues investigated the accumulation of PolyP granules under various cultivation conditions. From these studies, in particular with Plectonema boryanum cultured under phosphate starvation followed by phosphate overplus, Jensen drew the following conclusions (Jensen and Sicko, 1974).

Under normal growth conditions, PolyP granules were found mainly on DNA fibrills and in a zone enriched in ribosomes. Under conditions of P\textsubscript{i} starvation, an additional zone was formed in the region of nucleoplasm. Under phosphate overplus, PolyP granules accumulated in nucleoplasm and appeared in the polyhedral bodies involved in the dark reactions of photosynthesis in cyanobacteria (Stewart and Codd, 1975). In certain cells, PolyP granules formed near thylakoids. Similar reports for cyanobacteria have been made by other authors (Vaillancourt et al., 1978; Barlow et al., 1979).

In Anacystis nidulans, the intracellular PolyP level, which was manipulated by growth in the presence of various P\textsubscript{i} concentrations in the medium (0.3–3 mM), increased with the P\textsubscript{i} concentration up to 2.1 mM and decreased thereafter (Keyhani et al., 1996). Thus, the PolyP accumulation in cyanobacteria depended on the phosphorus content in the medium, as in other bacteria. The growth rate of cyanobacteria under phosphate starvation has been shown to be a function of the amount of previously accumulated PolyPs in the cells (Rhee, 1973). PolyP storage is a survival strategy under conditions of fluctuating phosphate supply characteristic of the environmental conditions, in which the cyanobacteria live (Falkner et al., 1995).

The above studies also give evidence of multiple localization of PolyP in the cells of cyanobacteria. This conclusion was confirmed by a 31P NMR spectroscopic study. In the cyanobacterium Synechocystis sp., two pools of soluble PolyP were identified \textit{in vivo} by 31P NMR spectroscopy (Lawrence et al., 1998). One of these (PolyP–cation complexes) lost their association cations after EDTA treatment, while the other did not.

The increase of PolyP accumulation in cyanobacteria was observed under conditions of sulfur deficiency, which diminished the growth (Lawry and Jensen, 1979; 1986).
fact indicated that in cyanobacteria, as in other bacteria, there are mechanisms of PolyP involvement in the overcoming of nutrition stresses.

The distribution of PolyPs between different fractions in cyanobacteria depends on culture age and growth conditions. For example, in Anabaena flos-aquae phosphorus is stored in different fractions depending on the nitrogen source. Under N₂ fixing conditions, P is stored as sugar P, whereas with nitrate as the N source it is stored as PolyP (Thompson et al., 1994).

X-ray dispersive microanalysis (Sicko-Goad et al., 1975; Baxter and Jensen, 1980a) combined with electron microscopy, established the phosphate nature of granules and showed that appreciable amounts of K⁺ and comparatively low quantities of Ca²⁺ and Mg²⁺ were present in the PolyP granules of cyanobacteria under ordinary cultivation conditions. Under special conditions, when the medium contained an excess of some metals such as Mg²⁺, Ba²⁺, Mn²⁺ or Zn²⁺ and some heavy metals, they accumulate in large quantities in the PolyP granules (Jensen et al., 1982). Sr²⁺ was found to accumulate in the cells of cyanobacteria, but in other inclusions containing sulfur instead of phosphorus.

X-ray microanalysis of thin cryosections of Anabaena cylindrica showed that aluminium was rapidly taken up and accumulated in PolyP granules (Pettersson et al., 1985). In addition, aluminium was found in the cell walls but could not be detected in the cytoplasm. The concentration of phosphorus in the medium affected the accumulation pattern. More aluminium was bound with PolyP granules and with the cell walls after growth in a P₁-rich medium.

Some evidence was obtained that the cells of Anacystis nidulans with a high PolyP content showed a greater tolerance to Cd²⁺ than those cells with a small PolyP reserve (Keyhani et al., 1996). Thus, the accumulation of metal cations in the PolyP granules of cyanobacteria may function as a detoxification mechanism.

Some cyanobacteria possess cyanophycin, which is a copolymer of aspartic acid and arginine (Lawry and Simon, 1982). This copolymer is accumulated in the granules, and its localization in complexes with PolyP is not improbable.

As regards other photosynthezing bacteria, PolyP metabolism was investigated in Chlorobium thiosulfactophilum (Fedorov, 1959, 1961; Shaposchnikov and Fedorov, 1960; Hughes et al., 1963; Cole and Hughes, 1965). The accumulation of PolyP in the course of culture development was studied (Fedorov, 1959; Shaposchnikov and Fedorov, 1960). It was shown that the maximal accumulation of PolyP occurred in the stationary phase. During culture growth, the proportion of acid-soluble to acid-insoluble PolyPs shifted towards the latter. Large amounts of acid-soluble PolyPs were accumulated in this bacterium when cells were illuminated in the absence of CO₂ (Fedorov, 1959). It was suggested that PolyPs were used as an energy store in the absence of CO₂ fixation.

In another phototrophic bacterium, Rhodospirillum rubrum, a massive pyrophosphate (PPₐ) biosynthesis by photosynthetic phosphorylation was shown (Baltscheffsky, 1967a,b,c, 1969; Baltscheffsky et al., 1966; Keister and Yike, 1967a,b; Keister and Minton, 1971, 1972; Kulaev et al., 1974a). It was demonstrated that, when Rh. rubrum was grown anaerobically in light, its chromatophores accumulated salt-soluble PolyPs in addition to PPₐ (Kulaev et al., 1974). The PolyPs in chromatophores may be synthesized from ATP (Shadi et al., 1976) or from PPₐ (Ok Duck-Chenn and Lee Hynn-Soon, 1987).

It should be pointed out (Kulaev et al., 1974a) that in Rh. rubrum, both in the dark and in the light, the accumulation of PolyP took place not only in salt-soluble but also in alkali-soluble and hot-perchloric-acid-extractible fractions. The total amounts of PolyP
Table 8.1 The content of Pi and PolyPs in the early stationary growth phase in *Halobacterium salinarium* and *Halorubrum distributum* (µmol of Pi per g of wet biomass).

<table>
<thead>
<tr>
<th>Component</th>
<th>Initial Pi concentration in medium</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H. salinarium</td>
</tr>
<tr>
<td>Pi</td>
<td>2.3 mM</td>
</tr>
<tr>
<td>Acid-soluble PolyP</td>
<td>170</td>
</tr>
<tr>
<td>Alkali-soluble PolyP</td>
<td>30</td>
</tr>
<tr>
<td>Acid-insoluble PolyP</td>
<td>9</td>
</tr>
</tbody>
</table>

in this bacterium differ little in the light and in the dark. However, under conditions of phototrophic nutrition, the ratio of salt-soluble to total PolyPs in the cells at all stages of growth was much higher than in the control cells grown in the dark.

These data are in good agreement with the investigations on the purple bacteria carried out by Weber (1965). However, *Rh. rubrum* and *Rhodospheromonas spheroides* differed substantially in PolyP distribution between various fractions. In *Rh. rubrum*, the greater part of PolyP was found in the acid-insoluble fraction, whereas in *Rhodospheromonas spheroides* the acid-soluble PolyPs constituted a much greater part of the total content in the cells. PolyPs were also identified in other photosynthesizing bacteria, namely *Chromatium okenii* (Schlegel, 1962), and *Rhodopseudomonas palustris* (Fedorov, 1961).

As to the enzymes of PolyP metabolism in photosynthetic bacteria, polyphosphate kinase activity was revealed in the cyanobacteria *Anacystis nidulans* (Vaillancourt et al., 1978) and *Oscillatoria redekei* (Zaiss, 1985). The mutant in this enzyme had no PolyP granules observable by electron microscopy (Vaillancourt et al., 1978). The alignment analysis revealed the genes encoding putative polyphosphate kinase (*ppk1* and *ppk2*) in several genomes of cyanobacteria (Zhang et al., 2002) (see Table 6.1 above).

The cyanobacterium *Synechocystis sp* possesses the *ppx* gene encoding exopolyphosphatase, which was induced by Pi starvation. The *ppx* mutant exhibited lower growth rates under Pi-sufficient conditions, hence indicating the importance of exopolyphosphatase in the phosphorus metabolism of this organism (Gomez-Garcia et al., 2003).

8.7 Mycobacteria and Corynebacteria

The metabolism of PolyP in these two genera of bacteria has many features in common, and it would be better to discuss them together. These bacteria, under normal growth conditions, accumulate substantial amounts of volutin granules and possess the widest range of PolyP-metabolizing enzymes known so far (Muhammed et al., 1959; Muhammed, 1961; Hughes and Muhammed, 1962; Szymona, 1957, 1962, 1964; Phillips et al., 1999).

The most detailed investigations into PolyP metabolism of the *Mycobacteria* and *Corynebacteria* have been carried out by Drews (1960a,b), Mudd and co-workers (Mudd
Figure 8.10 Changes in the amount of PolyP, granules and exopolyphosphatase activity in Corynebacterium xerosis (Hughes and Muhammed, 1962): (1) exopolyphosphatase activity; (2) PolyP; (3) granules; (4) biomass.

et al., 1958), Winder and Denneny (1957) and Szymona (1964). These workers have shown that rapidly dividing cells of Mycobacteria accumulate minimal amounts of PolyPs. When the cells enter the stationary growth phase, the more rapid biosynthetic processes cease and the PolyP content increases rapidly. When culture development is inhibited by nitrogen starvation (Sall et al., 1956), antimetabolites azaserine (Mudd et al., 1958) or ethionine (Ebel, 1952d), or deficiency of Zn²⁺ in the medium, PolyP accumulates rapidly. Thus, the accumulation of PolyPs under stress is also characteristic of this group of bacteria.

When the normal growth conditions are restored, PolyP is actively utilized for the biosynthesis of nucleic acids and phospholipids as a source of phosphorus (Mudd et al., 1958; Winder and Denneny, 1957).

PolyP metabolism under various growth conditions and at different growth stages has also been investigated in Corynebacterium (Hughes and Muhammed 1962; Dirheimer and Ebel, 1962, 1964b, 1965, 1968). Hughes and Muhammed (1962) showed that the PolyP content of Corynebacterium xerosis was a function of the phase of growth (Figure 8.10). When the cells of this bacterium were placed in a fresh medium, PolyP accumulation was observed during the latent period. On entering the logarithmic growth phase, PolyP was actively utilized and accumulated again in the stationary phase. As in Mycobacteria, rapid accumulation of PolyP occurred under nitrogen starvation. In Corynebacterium diptheriae, it was shown that acid-insoluble PolyP accumulated in the greatest amounts at a stage...
preceeding cell division and was consumed rapidly in the process of division (Dirheimer and Ebel, 1962, 1964b, 1965, 1968).

Using 31P NMR spectroscopy, the accumulation of soluble cytosolic PolyP under aeration and its breakdown under anaerobiosis have been observed in Corynebacterium glutamicum (Lambert et al., 2002). Under 60–80 % saturation with oxygen, PolyP accumulation was detected when P_i and glucose or acetate were added to a cell suspension. This PolyP was apparently of a high molecular weight, but at the initial stages of PolyP formation its chain length was ~ 40 phosphate residues. The PolyP level rose after the addition of carbon sources and declined again when the oxygen level was recovered. Both processes, the increase of PolyP during aeration and supply with carbon source and P_i and the decrease during anaerobiosis, occurred within minutes (Lambert et al., 2002). Thus, PolyP occurs in Corynebacterium glutamicum not only as a granular store material, but also as a very dynamic compound that may play a decisive role in this bacterium.

The presence of some specific PolyP-dependent enzymes is characteristic of these bacteria. First, it is polyphosphate glucokinase that was found in Mycobacterium phlei (Szymona, 1957), Corynebacterium xerosis (Dirheimer and Ebel, 1962, 1964b, 1968) and Mycobacterium tuberculosis (Hsieh et al., 1993a;b; 1996a,b), and other representatives of this systematic group (Dirheimer and Ebel, 1962, 1964b; Kulaev and Vagabov, 1983). This enzyme, purified from Mycobacterium phlei (Girbal et al., 1989) and cloned from Mycobacterium tuberculosis (Hsieh, 1996; Hsieh et al., 1996a), is well described in a recent review (Phillips et al., 1999). Secondly, in Mycobacterium tuberculosis a polyphosphate/ATP–NAD kinase was characterized (Kawai et al., 2000). Such activity was found in Corynebacterium ammoniagenes (Fillipovich et al., 2000).

Thirdly, in Mycobacterium phlei in media containing fructose, mannose or gluconate, enzymatic activities were found forming fructose-6-phosphate, mannose-6-phosphate or gluconate-6-phosphate through PolyP utilization (Szymona and Szumilo, 1966; Szymona et al., 1969). Finally, AMP phosphotransferase activity in Corynebacterium and Mycobacterium was revealed (Winder and Denneny, 1957; Szymona, 1964; Dirheimer and Ebel, 1965). It is likely that the abilities to utilize PolyPs directly for the phosphorylation of NAD, glucose and other sugars provide considerable energetic advantages for these bacteria.

Polyphosphate kinase (Muhammed, 1961; Robinson and Wood, 1986; Robinson et al., 1987) and exopolyphosphatase (Muhammed et al., 1959) are presented as well, while putative genes for these activities have also been found (Zhang et al., 2002; Cardona et al., 2002). The exopolyphosphatase of C. xerosis was studied by Muhammed et al. (1959). This activity changes during the culture growth, in parallel with the accumulation of PolyP and PolyP granules (see Figure 8.10), hence indicating the importance of this enzyme in PolyP metabolism. The possible pathways of PolyP metabolism in Mycobacteria are shown schematically in Figure 8.11 (Szymona, 1964).

8.8 Propionibacteria

PolyP metabolism has been most studied in Propionibacterium shermanii. Konovalova and Vorob’eva (1972) have examined the PolyP content in this bacterium. In this study, 70–80 % of the total PolyP was found in the fraction extracted by hot perchloric acid at all
growth stages, using lactate as a carbon source. The remaining 20–30 % of the PolyP was evenly distributed between the salt-soluble and alkali-soluble fractions. Low-molecular-weight acid-soluble PolyP in the propionic bacteria at all growth stages on lactate was not found. The total amount of PolyP increases during the culture growth (Figure 8.12). The PolyP content increased sixfold under logarithmic growth whereas it remained at the same level during the stationary growth phase (Kulaev et al., 1973a).

It was shown that the accumulation of PolyP fractions in P. shermanii was strongly inhibited by adding 50 µg ml⁻¹ of the antibiotic polymyxin M to the medium (Konovalova and Vorob’eva, 1972). The presence of this antibiotic in the culture medium substantially retarded the accumulation of this compound (Figure 8.12). This observation is of great interest in view of the fact that the site of attack of this antibiotic in the bacterial cell is the cytoplasmic membrane. The close link between PolyP metabolism and the functioning of the cytoplasmic membrane may be explained by inhibition of the P₁ uptake or by possible inhibition of PolyP-synthesizing enzymes or, conversely, activation of PolyP-cleaving enzymes. In order to resolve this question, an attempt was made in our laboratory to determine the activities of most of the enzymes currently known to be involved in the synthesis or utilization of PolyPs in this microorganisms (Kulaev et al., 1973). The activities of some PolyP-dependent enzymes were examined at different growth stages of P. shermanii (see Figure 8.12). It can be seen that under normal growth conditions, 1,3-diphosphoglycerate–polyphosphate phosphotransferase is more active in old culture. Polymyxin M has no

Figure 8.11 Possible pathways of PolyP metabolism in Mycobacteria (Szymona, 1964).
Figure 8.12 Changes in polyphosphate and polyphosphate-metabolising enzymes during the development of a culture of Propionibacterium shermanii under normal conditions, and in the presence of polymyxin M (Kulaev et al., 1973a): (1) control conditions; (2) polymyxin M: (a) total PolyP; (b) 1,3-diphosphoglycerate–polyphosphate phosphotransferase; (c) polyphosphate kinase; (d) polyphosphate–glucokinase; (e) tripolyphosphatase; (f) exopolyphosphatase with PolyP$_{200}$.
effect on polyphosphate kinase activity and only a slight, but nevertheless definite, effect on 1,3-diphosphoglycerate–polyphosphate phosphotransferase activity. The polyphosphate glucokinase activity remained at a high level during the whole time of cultivation and was not affected by polymyxin. Polymyxin M, when added to the growth medium, significantly increases (by a factor of 2–7) the activity of exopolyphosphatase and tripolyphosphatase. This is an indication that the functioning of these enzymes may be closely bound (as in other microorganisms) with the cytoplasmic membrane, which is the site of action of polymyxin M. The polyphosphatase evidently plays an important part in PolyP degradation. As soon as this enzyme activity begins to appear, PolyP accumulation ceases. In the presence of polymyxin, the increase of this activity correlated with the reduction in the PolyP level.

Great contributions to the studies of PolyP metabolism were made by Wood and co-workers (Clark et al., 1986; Clark and Wood 1987; Wood and Clark, 1988). These workers obtained three PolyP fractions from *P. shermanii*, i.e. short-chain PolyPs soluble in trichloroacetic acid, long-chain PolyPs soluble at neutral pH, and long-chain PolyPs present in volutin granules. Cells grown on lactate did not contain short-chain PolyPs but did contain a high amount of long-chain PolyPs, which accumulated to 3% of the dry cell biomass (Clark et al., 1986). At least 70% of this PolyP was present in volutin granules. The PolyPs ranged from 250 to 725 phosphate residues and were of the same average size as those synthesized *in vitro* by polyphosphate kinase from this bacterium. In contrast to the cells grown on lactate, the glucose-grown cells did not contain volutin granules, but did contain short-chain PolyPs with an average chain length of 25–75 residues. It has been proposed that the amounts and chain lengths of the PolyPs are lower during growth on glucose, because they are utilized as substrates in the phosphorylation of glucose by polyphosphate glucokinase present in this organism (Wood and Clark, 1988). Later, polyphosphate glucokinase from this organism was purified, cloned and characterized (for reference, see Chapter 6).

Data indicating participation of PolyPs in overcoming stress were obtained in *Propionibacteria*. The PolyP component in the 31P NMR spectra of *Propionibacterium acne* increased after ultraviolet light irradiation (Kjeldstad and Johnson, 1987) and after hyperthermia treatment (Kjeldstad et al., 1988). Such treatments, carried out in triplicate, induced an increase in the PolyP content, as observed by 31P NMR spectroscopy. One of the explanations for this might be that hyperthermia and ultraviolet light induce an oxidative stress in the cells, which increases the amount of PolyP (Kjeldstad and Johnson, 1987; Kjeldstad et al., 1988).

To summarise, it should be said that the PolyP content and chain length in *Propionibacteria* are strongly dependent on the carbon source. These bacteria possess polyphosphate glucokinase and are able to directly utilize PolyP for glucose phosphorylation.

8.9 Archaea

PolyP metabolism in Archaea, a very ancient and heterogenic domain of prokaryotes, has been little studied. PolyP and PolyP-dependent enzymes were observed in some representatives of this domain (Scherer and Bochem, 1983; Skorko, 1989; Trotsenko and Shishkina, 1990; Rudnick et al., 1990; Andreeva et al., 2000; Smirnov et al., 2002a,b; Cardona et al., 2002).
Figure 8.13 Changes in PolyP content during growth of *Halobacterium salinarium* on a medium with 2.3 mM of P$_i$ (Smirnov *et al.*, 2002a): (♦) acid-soluble PolyP; (■) alkali-soluble PolyP.

Methanosarcina frisia accumulates phosphate up to a level of 14 % of its dry weigh (Rudnick *et al.*, 1990). The phosphate is stored as PolyP, as shown by 31P NMR spectroscopy. This archaeon accumulate more phosphate in the presence of methanol as the carbon source, when compared with CO$_2$ and H$_2$ as the only carbon and energy sources (Rudnick *et al.*, 1990).

Halobacterium salinarium and *Halorubrum distributum*, extremely halophilic archae, were capable of consuming up to 95 % of the phosphate from the culture medium at P$_i$ concentrations of 2.3 and 11.5 mM. These archae possess PolyPs of acid-soluble and alkali-soluble fractions, and the contents of these PolyPs changed abruptly during growth (Andreeva *et al.*, 2000; Smirnov *et al.*, 2002a,b). The dynamics of the PolyP content during the growth of *H. salinarium* on the medium with 2.3 mM P$_i$ is shown on Figure 8.13. However, the phosphorus of the PolyP was no more than 10 % of all of the phosphorus accumulated in the culture (Table 8.1). The greater part of the P$_i$ was present in biomass as magnesium orthophosphate, the amount of which by the early stationary phase might have reached nearly 90 % of the phosphate consumed by the cells (Smirnov *et al.*, 2002a,b). The excess accumulation of P$_i$ evoked changes in cell morphology, and a part of the cell population lost viability. The accumulation of phosphate as its inorganic soluble salt is an unfavourable factor for the vital functions of individual cells but may be useful for the survival of a population as a whole at further growth on a phosphate-deficient medium. It was shown that *H. salinarium* cells grown on a medium with P$_i$ excess can use the P$_i$-phosphate reserve in a P$_i$-limited medium (Smirnov *et al.*, 2002a,b). Obviously, *H. salinarium* has insufficiently developed regulatory mechanisms, which might regulate phosphate utilization and reservation as PolyP. Although this organism had an appreciable PolyP pool, its exopolyphosphatase activity was very low (Andreeva *et al.*, 2000). This activity did not depend on the phosphate content in the medium, the amount of PolyP, or the culture age. Thus, in contrast to yeast and a number of bacteria where PolyPs play an important role in maintaining homeostasis of phosphorus compounds in a cell under unfavorable conditions, the PolyP function and metabolism in *H. salinarium* are not directly connected with P$_i$ reservation. *H. salinarium* obviously shows a rather ancient and primitive form of phosphate reservation as inorganic P$_i$.

![Graph showing changes in PolyP content during growth of Halobacterium salinarium](image-url)
It should be noted that no ppx or ppk similar genes were found in *Halobacterium* genome (Cardona *et al.*, 2002). There are little data on exopolyphosphatase activity in other Archae. In *Sulfolobus solfataricus* (Cardona *et al.*, 2002) this was very low – much less than in bacteria. In *Sulfolobus solfataricus*, however, a functionally active gene of exopolyphosphatase was found (Cardona *et al.*, 2002) with a similarity to bacterial ppx. In other archaeal genomes, putative genes similar to the yeast PPX1 or bacterial ppx genes have been revealed (Cardona *et al.*, 2002). However, the functional activity and significance of the proteins encoding by these genes are still unclear.

8.10 Yeast

Yeast are the microorganisms where PolyPs were first discovered (Liebermann, 1888). Many papers and reviews summarize the available data on PolyP metabolism and functions in these organisms (Schmidt *et al.*, 1946; Hoffman-Ostenhof and Weigert, 1952; Wiame, 1947a,b, 1948, 1949; Hoffmann-Ostenhof *et al.*, 1955; Yoshida, 1955a,b; Langen and Liss, 1958a,b, 1959; Kulaev and Belozersky, 1962a,b; Harold, 1966; Weimberg and Orton, 1964, 1965; Weimberg, 1970; Dawes and Senior, 1973; Matile, 1978; Kulaev, 1971, 1974; Kulaev and Vagabov, 1983; Kornberg, 1995, Kornberg *et al.*, 1999; Kulaev *et al.*, 1999; Kulaev and Kulakovskaya, 2000), and here we will cite only some of these.

The content of PolyPs in yeast cells strongly depends on the culture conditions and growth stage and can be as much as 10% of the total dry weight of a yeast cell (Salhany *et al.*, 1975). In Pi complete media, the highest values of PolyPs were observed in the stationary phase. PolyPs with chain lengths of as low as 3–8 to as high as 200–260 were obtained from the cells of these microorganisms by chemical extraction (Langen and Liss, 1959; Schuddemat *et al.*, 1989a).

It should be noted that yeast possesses PolyPs in nearly all cell compartments (see Chapter 5) and the compartmentation of these biopolymers should be taken into consideration when analysing their accumulation and utilization.

8.10.1 Yeast Cells Possess Different Polyphosphate Fractions

The content of PolyP in yeast cells was determined by various techniques, including chemical extraction, 31P NMR spectroscopy, enzymatic, and electrophoretic methods (see Chapter 2). One of the most suitable methods for the study of PolyPs in yeasts is chemical extraction (Langen and Liss, 1958a,b; Chernyscheva *et al.*, 1971; Vagabov *et al.*, 1998), which made it possible to isolate five PolyP fractions.

The acid-soluble fraction, PolyP(I), was extracted with 0.5 M HClO4 (or 10% trichloroacetic acid) at 0 °C for 30 min. The salt-soluble fraction, PolyP(II), was extracted with a saturated solution of NaClO4 at 0 °C for 1 h. The weak alkali-soluble fraction, PolyP(III), was extracted with weak NaOH, pH 9–10, at 0 °C for 30 min. The alkali-soluble fraction, PolyP(IV), was extracted with 0.05 M NaOH at 0 °C for 30 min. The last fraction, PolyP(V), was assayed by the amount of Pi which appeared after the hydrolysis of biomass in 0.5 M HClO4 at 90 °C for 40 min.
The synthesis and degradation of these fractions are closely related to metabolic processes in individual cell compartments, and their dynamics are affected in different ways by changes in the culture conditions.

8.10.2 The Dynamics of PolyP Fractions during the Cell Cycle

The relationship between the metabolism of various PolyP fractions, RNA and DNA in synchronous cultures of the yeast *Schizosaccharomyces pombe* (synchronicity index, 0.7–0.8) has been investigated (Kulaev et al., 1973b). As shown in Figure 8.14, there were substantial changes in the amounts of a wide variety of phosphorus compounds in the interval between the two episodes of division, i.e. during the growth of dividing cells. The shape of the curve for total phosphorus accumulation during this period is mainly determined by accumulation of RNA in the cells. The amount of DNA is doubled over a short time interval (~ 15 min) and reaches its maximum at the beginning of the next episode of cell division. During the first two thirds of the period of synchronous growth of *S. pombe*, the total PolyP content increased. In the period immediately preceding cell division, a slight fall in PolyP accumulation was observed. Fractions PolyP(III) and PolyP(IV) accumulated rapidly at the beginning of this period. Accumulation of PolyP(IV) appeared first. These data are in agreement with the opinion that these fractions are synthesized in connection with the biosyntheses of the cell wall polysaccharides mannan and glucan (Kulaev et al., 1972d). Fraction PolyP(II) accumulated in the cells of the synchronous culture in correlation with the RNA biosynthesis. It is probable that the formation of PolyP(II) and the nucleic acids biosynthesis are linked as shown in Figure 8.15. Using the 32P isotope, it was shown that the phosphorus of the PolyP might incorporate with RNA synthesis to the same extent for all of the nucleosides (Kulaev and Belozersky, 1957). As regards PolyP(I), its behaviour is converse to that of the total RNA. This fraction is apparently a reserve of high-energy phosphate and is probably used during the intensive synthesis of nucleic acids. On the basis of these results, the following outline of the PolyP relationship during the cell cycle in the yeast *S. pombe* may be proposed. During the biosynthesis of RNA, the high-energy phosphate of PolyP(I) is utilized. On the other hand, the PP$_i$ formed in the nucleus during the RNA (DNA) biosynthesis may be a source for the synthesis of PolyP(II). By depolymerization of these fractions, restoration of the PolyP(I) fraction may occur. The PolyP(III) and PolyP(IV) fractions are apparently connected with the formation of the cell wall during cell division and are not involved in nucleic acid biosynthesis. Thus, the data obtained on the synchronous culture of yeast gave evidence of the different roles of PolyP fractions during the cell cycle.

In the *S. cerevisiae* synchronous culture, an increased P$_i$ uptake from the culture medium during DNA synthesis was observed (Gillies et al., 1981). At a high level of external P$_i$, this uptake provided the necessary phosphorus level in cells and the 31P ‘NMR-visible’ PolyP remained constant. However, if the external P$_i$ content was low, this PolyP was consumed, acting as a substitute for the phosphate reserve (Gillies et al., 1981).

A complicated and indirect interaction of the mitosis specific activation of the P$_i$-responsive gene *PHO5* and the PolyP level in *S. cerevisiae* has been found (Neef and Kladde, 2003). *PHO5* mitotis activation was repressed by P$_i$ addition, which significantly
increased the PolyP content. The PolyP level fluctuated inversely with the PHO5 mRNA during the cell cycle, thus indicating an important link between this polymer and mitotic regulation of PHO5 (Neef and Kladde, 2003).

All of these observations give evidence for the important role of PolyPs in cell cycle regulation in yeast.
150 Peculiarities of polyphosphate metabolism

\begin{figure}
\centering
\includegraphics[width=\textwidth]{Figure8.15.png}
\caption{The hypothetical linkage of PolyPs and nucleic acids biosynthesis in yeast and fungi.}
\end{figure}

8.10.3 The Relationship between the Metabolism of Polyphosphates and other Compounds

Besides the correlation between the rates of accumulation of RNA and the PolyP(II) fraction (Kulaev et al., 1973b; Kulaev and Belozersky, 1957; Kulaev and Vagabov, 1983), a good correlation between the rates of PolyP(IV) accumulation and the synthesis of cell wall polysaccharides has been revealed (Kulaev et al., 1972d; Vagabov et al., 1973; Tsiomenko et al., 1974; Shabalina et al., 1979; 1985; Vagabov, 1988). This correlation can be seen in Figure 8.16. These data suggest a specific interrelation between the metabolisms of these two compounds, which, although quite different in their chemical nature, are nevertheless components of the same organelle, namely the cell envelope. The presence of PolyPs in the cell envelopes of yeast and fungi has been established by using many techniques (Weimberg and Orton, 1965; Weimberg, 1970; Kulaev and Afanas’eva, 1970, Vöršek et al., 1982; Tijssen et al., 1982, 1983; Tijssen and Van Steveninck, 1984, 1985; Vagabov et al., 1990; Ivanov et al., 1996). Later, an enzyme dolichyl-diphosphate:polyphosphate phosphotransferase (EC 2.7.4.20) was found in the membrane fraction of yeast cells (Shabalina et al., 1979, 1984, 1985; Naumov et al., 1985; Kulaev et al., 1987), and the putative pathway of joint mannan and PolyP biosynthesis was proposed.

There was some evidence for the possible involvement of PolyPs localized in the cell periphery in the uptake and phosphorylation of sugars as energy and phosphate donors (Van Steveninck and Booij, 1964; Hofeler et al., 1987). Later, studies of the mechanisms of transport-associated phosphorylation of 2-deoxy-D-glucose in the yeast Kluyveromyces marxianus (Schuddemat et al., 1989b) and Saccharomyces cerevisiae (Schuddemat et al., 1990) resulted in the conclusion that PolyPs seem to replenish the \(P_i \) pool and therefore had an indirect role in sugar transport.

8.10.4 Polyphosphate Fractions at Growth on a \(P_i \)-Sufficient Medium with Glucose

Glucose is the most common carbon substrate for many yeasts, and the PolyPs contents at different growth stages using this energy source has been analysed in detail. A \(^{31}\)P NMR
Figure 8.16 Changes in the content of mannan (○) and PolyP(IV) fraction (●) during growth of *Saccharomyces cerevisiae* in a Reader medium in the presence (a) and absence (b) of a nitrogen source (Kulaev *et al.*, 1972d).

A spectroscopic study showed that the logarithmic cells contained substantially shorter PolyPs than the stationary cells (Greenfield *et al.*, 1987).

The contents and chain lengths of the PolyPs in different fractions from *S. cerevisiae* growing on a ‘Reader medium’ (Reader, 1927) with glucose and a sufficient amount of P₁ were studied by a combination of chemical extraction and 31P NMR spectroscopy (Vagabov *et al.*, 1998). Before glucose was consumed from the medium (11 h of culture growth), the biomass and total cellular PolyP content had increased in parallel (Figure 8.17). After glucose depletion, the content of PolyP in the cells fell sharply and then increased again in a 24 h culture. The significant decline in the content of intracellular PolyP, while the P₁ concentration in the growth medium is high may imply that in this growth phase PolyP is an energy rather than a P₁ source.

The changes in the contents of the PolyP(I) and PolyP(II) fractions were minimal during yeast growth (Figure 8.17). The PolyP(III) fraction increased almost threefold after 3 h of growth and then decreased by about fivefold by the time of glucose exhaustion (10.5 h of culture growth). In contrast, the content of the PolyP(IV) fraction diminished noticeably in a 3 h culture. It is known that the PolyP(IV) fraction is located at the peripheries of the yeast cells and their synthesis is coupled with the synthesis of mannoproteins of the cell wall (Shabalin *et al.*, 1979, 1985). It can be assumed that the changes in the cellular content of these PolyP fractions are associated with the formation of the cell wall in *S. cerevisiae*.

The PolyPs belonging to different fractions differ to a greater extent in their states or localizations in the cells rather than in their degrees of polymerization (Vagabov *et al.*, 1998). The chain lengths of the PolyPs belonging to these fractions are not
always significantly different and depend on the growth stage (Figure 8.18). This becomes especially evident when comparing the changes in the degree of polymerization of the fractions of PolyP(II), PolyP(III) and PolyP(IV). In all of these fractions, the PolyP chain is drastically shortened during the first 3 h of yeast growth. In the case of PolyP(III) and PolyP(IV), this shortening took 6 h of culture growth in a complete medium. The degrees of polymerization of these fractions were found to increase again only in a 24 h culture (Figure 8.18). These data support the assumption that in a P$_1$-sufficient growth medium PolyPs may act as reserves of energy, which are replenished when the carbon sources have been depleted.

The accumulation of PolyPs (accompanied by their dramatic shortening) in actively growing yeast cells indicates that the processes of PolyP synthesis and depolymerization may occur in parallel. Exopolyphosphatases (Lichko et al., 2003a) and endopolyphosphatase (Kumble and Kornberg, 1995) could be involved in the depolymerization of PolyPs. The active synthesis of PolyPs, accompanied by dramatic decreases in their lengths in the logarithmic phase of S. cerevisiae growth in a carbon- and phosphorus-sufficient medium, suggests that the energy derived from PolyP hydrolysis is necessary to maintain the high rate of yeast growth.
8.10.5 The Effects of Pi Limitation and Excess

The Pi limitation causes a sharp decline of PolyPs in yeast cells (Liss and Langen, 1962; Kulaev and Vagabov, 1983). Under Pi limitation, yeast cells have often no 31P ‘NMR-visible’ PolyPs (Hofeler et al., 1987). When Pi-starved yeast cells are placed on a complete medium, the PolyP content rises sharply, i.e. the so-called ‘phosphate overplus’ (hypercompensation) effect occurs (Liss and Langen, 1962).

The content (Figure 8.19) and degree of polymerization (Figure 8.20) of PolyPs were determined in the course of growth of the yeast *Saccharomyces cerevisiae* in a medium with glucose, which contained varying Pi amounts at a constant level of all necessary components (Vagabov et al., 2000). After 7 h of phosphate starvation, the yeast was shown to use almost the complete phosphate reserve in the form of PolyPs to support its vitality (Figure 8.19). The PolyP drop was followed by a considerable shortening of the polymer chain length of acid-soluble (PolyP(I)) and two alkali-soluble (PolyP(III) and PolyP(IV)) fractions (Figure 8.20). Under the same conditions, the content of a salt-soluble fraction (PolyP(II)) decreased almost 20-fold with a simultaneous increase of the chain length of nearly twofold.

Re-inoculation of yeast cells after phosphate starvation to a complete Pi- and glucose-containing medium resulted in the accumulation of PolyP within 2 h, mainly in PolyP(III), and, to a lesser extent, in the PolyP(I), PolyP(II) and PolyP(V) fractions. In the PolyP(IV) fraction localized on the cell surface, PolyP ‘super-accumulation’ was not detected. Increase in the PolyP amount in the above fractions turned out not to be accompanied by simultaneous elongation of their chain lengths and occurred at the lowest level, which is characteristic of a polymer level for each fraction (Figure 8.20). Further cultivation of the yeast on the complete medium over 2 h had little or no effect on the PolyP content in the cells but led to elongation of the PolyP chain, especially in the PolyP(III) and PolyP(IV) fractions. This phenomenon of considerable elongation of the PolyP chain on the background of

Figure 8.18 Changes in the degree of polymerization (n) in PolyP fractions during growth of *Saccharomyces cerevisiae* on glucose (Vagabov et al., 1998): (1a) PolyP(I), precipitation by barium salt at pH 8.2; (1b) PolyP(I), precipitation by barium salt at pH 4.5; (2) PolyP(II); (3) PolyP(III); (4) PolyP(IV).
Figure 8.19 The PolyP content (a) and cell growth (b) of *Saccharomyces cerevisiae* under different culture conditions (Vagabov *et al.*, 2000): (1) PolyP(I); (2) PolyP(II); (3) PolyP(III); (4) PolyP(IV); (5) PolyP(V); (6) total PolyP content. The points indicate the following: (A) re-inoculation from complete medium to the medium without P_i; (B) re-inoculation to the complete medium after growth on the medium without P_i; (C) and (D) growth in the complete medium for 2 and 4 h, respectively (after re-inoculation from the medium without P_i).

its fixed content suggests that yeast cells possess an unknown discrete pathway of PolyP biosynthesis, which results in the formation of comparatively low-molecular-weight chains and then of high-molecular-weight polymers (Figure 8.20). The different behaviours of the separate PolyP fractions during phosphate overplus suggests that the mechanism of the synthesis of distinct PolyP fractions may be different or at least regulated in different ways.

The phosphate overplus phenomenon is achieved in *S. cerevisiae* not only after the complete absence of P_i in the culture medium, but also after P_i limitation (Kulakovskaya *et al.*, 2004) (Figure 8.21). The dynamics of changes in the PolyP content of separate fractions was studied at re-inoculation of late-logarithmic cells from P_i-limited to complete medium. The PolyP(I), PolyP(II) and PolyP(III) fractions increased more significantly during the first 2 h of cultivation. After further cultivation, some redistribution of PolyPs between the fractions took place. The content of the PolyP(I) fraction decreased while those of the PolyP(II), PolyP(III) and PolyP(V) fractions increased in the stationary phase, although the content of PolyP(IV) changed insignificantly (Figure 8.21). Its twofold increase in the stationary phase was mainly due to the PolyP(III) and PolyP(V) fractions (Figure 8.21).
Yeast 155

Figure 8.20 Changes in the degree of polymerization (n) in PolyP fractions of Saccharomyces cerevisiae in dependence of P_i concentration in the culture medium (Vagabov et al., 1998): (1a) PolyP(I), precipitation by barium salt at pH 8.2; (1b) PolyP(I), precipitation by barium salt at pH 4.5; (2) PolyP(II); (3) PolyP(III); (4) PolyP(IV). The points indicate the following: (A) re-inoculation from complete medium to the medium without P_i; (B) re-inoculation from the medium without P_i to the complete medium; (C) and (D) growth in the complete medium after re-inoculation from the medium without P_i for 2 and 4 h, respectively.

At a control re-inoculation from complete to fresh medium, the total PolyP content did not change during 6 h of cultivation.

The cytosol possesses about \(\sim 60\% \) of the total exopolyphosphatase activity of S. cerevisiae cells. This activity is represented by two enzymes, the 40 kDa exopolyphosphatase 1 splitting PolyP_3 off most actively and the 830 kDa exopolyphosphatase 2 which is specific to long-chain PolyPs (see Chapter 6). Therefore, the effect of P_i limitation and excess on these exopolyphosphatases was examined. During the growth of S. cerevisiae using a low initial culture density (Figure 8.22), the activities of the cytosol exopolyphosphatases 1 and 2 were the same, both in the complete and P_i-limited media. Low-molecular-weight exopolyphosphatase 1 (PPX1) predominated in the cytosol independent of P_i concentration in the medium (Figure 8.22).

Under re-inoculation of late-logarithmic or stationary phase cells on the fresh medium with a high initial culture density (Figure 8.23(c)), the activities of two exopolyphosphatases in the cytosol essentially changed. Under phosphate overplus, the activity of exopolyphosphatase 2 increased, while the activity of exopolyphosphatase 1 decreased (Figure 8.23(a)). After a control re-inoculation from complete to fresh medium, the total activity of
Figure 8.21 The content of different PolyP fractions in *Saccharomyces cerevisiae* cells in the process of growth after re-inoculation of late-logarithmic cells on the fresh medium with a high initial culture density: (a) re-inoculation from a P\(_i\)-limited medium (with 1 mM P\(_i\)) to a complete Reader medium (with 18 mM P\(_i\)); (b) re-inoculation from a complete Reader medium to a fresh one: (○) polyP(I); (Δ) polyP(II); (●) polyP(III); (▲) polyP(IV); (×) polyP(V). The growth curves are shown below in Figure 8.23(c).

exopolypophosphatase 2 increased as well, although to a lesser extent (Figure 8.23(b)). The increase of exopolypophosphatase 2 activity was completely blocked by cycloheximide, indicating that the enzyme was synthesized *de novo*, while the inhibitor had little effect on PolyP accumulation (Figure 8.24). Thus, no direct interrelation between accumulation and utilization of PolyP and the activities of exopolypophosphatase 1 and 2 was observed. The role of these enzymes in the dynamics of PolyPs needs further investigation.

While PolyPs are localized in different compartments of the yeast cell, it is important to determine the effects of P\(_i\) starvation and P\(_i\) overplus on PolyPs in organelles. The content of PolyP in vacuoles of the yeast *S. cerevisiae* was \(~ 15\%\) of the total cellular PolyP. Over 80\% of vacuolar PolyPs were represented by the acid-soluble fraction. It was established by \(^{31}\)P NMR spectroscopic studies that the polymeric degrees (\(n\)) of two sub-fractions obtained by precipitation with Ba\(^{2+}\) ions in succession at pH 4.5 and 8.2 were approximately 20 \(\pm\) 5 and 5 \(\pm 2\) residues of orthophosphoric acid, respectively. Under the deficit of phosphate (P\(_i\)) in the culture medium, the PolyP content in vacuoles decreased \(~ sevenfold\) at the same drastic reduction of its content in the cell. Unlike the intact yeast cells where PolyP overcompensation is observed after their transfer from phosphate-free to phosphate-containing medium, the vacuoles do not show this effect (Table 8.2). The data obtained indicate the occurrence of special regulatory mechanisms of PolyP synthesis in vacuoles differing from those in the whole cell.

Mitochondria possess a PolyP pool, which is strongly influenced by the P\(_i\) content in the medium (Pestov *et al.*, 2003). Table 8.3 shows that the PolyP content in mitochondria increases sufficiently under phosphate overplus. This PolyP, represented by the acid-soluble fraction, had a chain length of \(~ 25\), estimated by electrophoresis under phosphate overplus (Pestov *et al.*, 2003) and was shorter (\(~ 15\)) under the control conditions.
Figure 8.22 The activities of exopolyphosphatases 1 (□) and 2 (■) in the cytosol fraction of Saccharomyces cerevisiae during the process of growth (●) at a low initial cell density without re-inoculation: (a) complete Reader medium; (b) P-limited medium. The cytosol fraction was subjected to gel filtration on a Sephacryl S-300 column. The exopolyphosphatase activities were estimated separately in the fractions corresponding to the molecular masses of ~40 kDa (exopolyphosphatase 1) and ~830 kDa (exopolyphosphatase 2).

8.10.6 The Effects of other Conditions on the Polyphosphate Content in Yeast Cells

The dependence of the PolyP content in yeast on the carbon and nitrogen sources has not been studied systematically. In some yeasts, which were able to grow on alkanes, much more rapid accumulation of PolyP (2–3 times) during growth on these carbon sources was observed when compared with growth on glucose (Levchuk et al., 1969; Grigor’eva et al., 1973). In contrast, PolyP synthesis with ethanol as an energy source was slower than with glucose in the cells of S. cerevisiae and K. marxianus (Schuddemat et al., 1989a).

When young S. cerevisiae cells were incubated in Tris buffer, at pH 7.5, with 5% of ethanol, a rapid breakdown of the ‘NMR-visible’ PolyP into smaller fragments occurred.
Peculiarities of polyphosphate metabolism

Figure 8.23 (a,b) The activities of exopolyphosphatases 1 (○) and 2 (●) in the cytosol fraction of *Saccharomyces cerevisiae* during the process of growth at a high initial cell density: (a) re-inoculation of late-logarithmic cells from a Pi-limited to a complete Reader medium; (b) re-inoculation of late-logarithmic cells from a complete medium to a fresh one. (c) The growth of *Saccharomyces cerevisiae* after re-inoculation from a Pi-limited medium to a complete Reader medium (▲) and from a complete Reader medium to a fresh one (△).

(Loureiro-Dias and Santos, 1990), in concordance with the ability of high ethanol concentrations for the de-energization of cytoplasmic and vacuolar membranes (Loureiro-Dias and Santos, 1990; Petrov and Okorokov, 1990).

The NMR spectroscopic study showed that the addition of 20 mM of NH₄⁺ to *S. cerevisiae* cells caused a rapid (within 10 min) substantial increase in the cytoplasmic and vacuolar P, and a breakdown of long-chain PolyP to short-chain PolyP and P₃ (Greenfeld et al., 1987). The effect did not depend on the anion used and was observed in both the logarithmic and stationary phase cells. Earlier, it was reported that the addition of ammonia or amino acids to nitrogen-starved cells caused an immediate (1-5 min) increase in the PolyP₃ level (Lusby and McLaughlin, 1980). The PolyP₃ was thought to derive from a breakdown of longer PolyPs, on the basis of metabolic labelling studies. In contrast, removal of nitrogen from the medium halted the PolyP₃ accumulation within 10 min (Lusby and McLaughlin,
Figure 8.24 The effect of inhibitors on the content of certain PolyP fractions in Saccharomyces cerevisiae cells under phosphate overplus (Trilisenko et al., 2003). (A) PolyP in P_{i}-starved cells; (B–G) PolyP in cells grown at 2 h after re-inoculation on the complete medium (phosphate overplus): (B) control conditions; (C) 10 mg ml\(^{-1}\) of cycloheximide; (D) 10 \(\mu\)M FCCP; (E) 20 \(\mu\)M FCCP; (F) 250 \(\mu\)M iodacetamide; (G) 50 nM bafilomycin A. PolyP fractions: (1) PolyP(I); (2) PolyP(II); (3) PolyP(III); (4) PolyP(IV); (5) PolyP(V).

1980). It is possible that the ammonia-initiated PolyP hydrolysis provided the mechanisms for maintenance of pH homeostasis in vacuoles.

The degradation of ‘NMR-visible’, probably vacuolar, PolyPs to short-chain polymers in S. cerevisiae was observed under conditions where it was necessary to neutralize the alkalization of cytoplasm (Castro et al., 1995, 1999).

Decrease in the PolyP level was observed under anaerobic conditions, probably because PolyP biosynthesis requires a great deal of energy (Den Hollander et al., 1981; Beauvoit et al., 1991; Castro et al., 1995). In energy-limited S. cerevisiae cells, a competition between ion transport and PolyP biosynthesis was revealed: ion transport was only observed in anaerobic cells without exogenous glucose with low ATP synthesis, whereas the addition of glucose supported PolyP synthesis (Hofeler et al., 1987).

In a continuous culture of Candida utilis (glucose-containing medium), a direct and almost linear relationship between the specific growth rate and the PolyP content in the cells and vacuoles was observed. The relationship of the growth rate and chain length of vacuolar PolyPs was an inverse one. At a low growth rate, two peaks with \(\sim 35\) and \(\sim 5\) P\(_{i}\) residues were observed, while at an intermediate growth rate, a peak of 15–25 units appeared with shorter chains of 5 units. When the growth rate was maximal, the short-chain PolyPs (\(\sim 5\) residues) prevailed (Nunez and Callieri, 1989).
Table 8.2 PolyP content (mg of Pi per g of dry cell biomass) in the cells, spheroplasts and vacuoles of *S. cerevisiae*. The yeast was grown for 4 h in a medium with 9 mM Pi (+P), then for 7 h in Pi-free medium (−P) and finally for 2 h in a medium with 9 mM Pi (+P, phosphate overplus) (Trilisenko *et al.*, 2002).

<table>
<thead>
<tr>
<th>Culture conditions</th>
<th>Cells</th>
<th>Spheroplasts</th>
<th>Vacuoles</th>
</tr>
</thead>
<tbody>
<tr>
<td>+P</td>
<td>16.85</td>
<td>12.27</td>
<td>2.29</td>
</tr>
<tr>
<td>−P</td>
<td>2.01</td>
<td>1.81</td>
<td>0.28</td>
</tr>
<tr>
<td>+P, phosphate overplus</td>
<td>38.32</td>
<td>27.21</td>
<td>0.65</td>
</tr>
</tbody>
</table>

Table 8.3 The content of acid-soluble PolyPs in isolated mitochondria of *S. cerevisiae* under Pi-limitation and excess in the culture medium: (−P) Pi-limited medium with 1.3 mM Pi; (+P) complete medium with 18 mM Pi, stationary growth stage.

<table>
<thead>
<tr>
<th>Culture conditions</th>
<th>PolyP (µmol (mg protein)^−1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(−P)</td>
<td>0.006</td>
</tr>
<tr>
<td>(+P)</td>
<td>0.25</td>
</tr>
<tr>
<td>Re-inoculation of the cells from (−P) to (+P) medium, phosphate overplus for 2 h of growth</td>
<td>0.85</td>
</tr>
</tbody>
</table>

All of these experiments suggested that the PolyP content in yeast cells depended strongly on the energetic status of the cells, including the ionic gradients on the membranes.

8.10.7 The Effects of Inhibitors on the Polyphosphate Content in Yeast Cells

The PolyP content in yeast cells depends on many factors, including the Pi concentration in the culture medium, the energetic state of the cells, and the activity of Pi uptake. Thus, all compounds that affect the above functions may influence the PolyP metabolism. While glucose is the main energy source in most studies of PolyPs in yeast, desoxyglucose is an effective inhibitor of PolyP accumulation. The amount of PolyPs in *S. cerevisiae* decreased by a factor of four upon the addition of 5 mM desoxyglucose and became undetectable in the presence of 10 mM desoxyglucose in a medium with 25 mM glucose (Herve *et al.*, 1992). PolyP accumulation under phosphate overplus was inhibited by 0.2 % desoxyglucose in the presence of 2 % glucose to a half of the control level (Kulakovskaya *et al.*, 2003).

Many workers have studied the effects of uncouplers and ionophores on the PolyP content under different growth conditions. All of these experiments showed that such reagents decreased the PolyP content in yeast cells.
The syringomycin caused P_i efflux from the cells of *Rhodotorula pillimanae*, with the efflux being accompanied by a decrease in the PolyP content and acidification of the cytoplasm (Reidl *et al.*, 1989). 31P NMR spectroscopy performed on xylose-grown whole cells of *Candida tropicalis* showed that azide lowered the intracellular pH, inhibited the P_i uptake, and decreased the building of PolyP (Lohmeier-Vogel *et al.*, 1989). A similar result was obtained with the uncoupler carbonyl cyanide m-chlorophenylhydrazone (CCCP) (Lohmeier-Vogel *et al.*, 1989).

It was shown that the P_i uptake and PolyP accumulation in *S. cerevisiae* is suppressed by antimycin A if ethanol is used as an energy source and is not suppressed in the presence of glucose (Schuddemat *et al.*, 1989a). This fact indicates that the mitochondrial function may be important for PolyP accumulation when oxidative phosphorylation is the main energy source.

The effect of CCCP on ‘NMR-detected’ PolyP was investigated in *S. cerevisiae* grown on lactate (Beauvoit *et al.*, 1991). The cells were incubated in a resting medium in aerobiosis with lactate or glucose or in anaerobiosis with glucose. For each case, in vivo 31P NMR spectroscopy was used to measure the levels of phosphorylated compounds. A spontaneous PolyP breakdown occurred in anaerobiosis and in the absence of CCCP. In aerobiosis, PolyP hydrolysis was induced by the addition of either CCCP or a vacuolar membrane ATPase-specific inhibitor, bafilomycin A1 (Beauvoit *et al.*, 1991).

It is important to note that selection of the concentrations of the uncouplers, which are inhibitory for PolyP accumulation but not for P_i uptake, is a difficult task. In many cases, the decrease of PolyP content in the presence of membrane-damaging agents and ionophores may be due to a break in P_i uptake and a lack of P_i for PolyP synthesis. The latter may decrease independent of the form of P_i-uptake inhibition. For example, *Candida humicola* accumulated 10-fold more PolyP during active growth in a complete glucose–mineral salt medium, pH 5.5, than at pH 7.5. This is probably due to the high P_i uptake rate from the culture medium at pH 5.5, whereas a 4.5-fold decrease in P_i uptake occurred at pH 7.5 (McGrath and Quinn, 2000).

Despite the above circumstances, we have attempted to analyse the effects of some inhibitors on PolyP accumulation in glucose-grown *S. cerevisiae* during phosphate overplus (Trilisenko *et al.*, 2003). The protonophore FCCP suppressed PolyP accumulation, indicating the dependence of this process on the $\Delta \mu H^+$ on the membranes (see Figure 8.24). The PolyP(IV) fraction was shown to be the most sensitive, with the PolyP(I) fraction the next in sensitivity to FCCP (Figure 8.24). Iodoacetamide, a well-known inhibitor of glycolysis, had little effect despite the effective growth inhibition. In the presence of bafilomycin A1, the increases in the contents of PolyP(I), PolyP(IV) and PolyP(V) during phosphate overplus were the same as in the control, whereas the contents of PolyP(II) and PolyP(III) were lower than in the control. The synthesis of some parts of these fractions probably depends on the $\Delta \mu H^+$ on the vacuolar membranes. In the presence of cycloheximide, an inhibitor of protein synthesis, only the accumulation of the PolyP(IV) fraction appeared to be disrupted. The insignificant effect of cycloheximide on the accumulation of other PolyP fractions indicates that the corresponding enzymatic system was already induced during phosphorus limitation. The unequal effects of the inhibitors on the accumulation of certain PolyP fractions confirms the idea that these fractions have specific pathways of biosynthesis and a specific function in yeast cells.
The Effects of Mutations on the Content and Chain Lengths of Polyphosphate in Yeast

Kornberg and co-workers (Kornberg, 1995, Wurst et al., 1995; Kornberg et al., 1999; Sethuraman et al., 2001) have made a great contribution to identification of the genes involved in PolyP metabolism in yeast.

Many genes are probably involved in the regulation of PolyP metabolism in yeast. The most studied enzymes of PolyP metabolism in yeast are exopolyphosphatases and endopolyphosphatase (see Chapter 6). The genes of one of the exopolyphosphatases, PPX1 (Wurst et al., 1995), and endopolyphosphatase, PPN1 (Sethuraman et al., 2001), were disrupted and their effects on the dynamics and chain lengths of PolyPs were studied. The PPX1-deficient mutant had more PolyP at early growth stages than the parent strain, and the double PPX1 and PPN1-deficient mutant had approximately three times more PolyP than the parent strain (Figure 8.25). In addition, both mutants contained mostly medium-chain-length PolyPs when compared with the predominance of short chains in the parent strain (Figure 8.26). It was proposed that the loss of viability of the PPN1 mutants may be a result of accumulation of a large amount of PolyP, which could affect the concentration of important divalent cations such as Ca$^{2+}$ and Mg$^{2+}$ in the cells (Sethuraman et al., 2001).

When analysing the involvement of new genes in PolyP metabolism, it should be taken into account that PolyP accumulation strongly depends on the availability of P_i for yeast cells. In *S. cerevisiae*, the PHO system includes many genes involved in the P_i uptake (Oshima, 1997) and it is not unexpected that the products of these genes may influence PolyP accumulation and utilization. DNA microarray analysis was used to identify 22 PHO-regulated genes (Ogawa et al., 2000a). Some of these genes, e.g. PHM1, PHM2, PHM3 and PHM4, are 32–56 % identical. The PHM3 or PHM4 single mutants and the PHM1/PHM2 double mutant are deficient in accumulation of P_i and PolyP. It is probable that the proteins encoded by these genes are involved in vacuolar transport (Cohen et al., 1999). The disruption of another gene, PHM5, gives a phenotype with an essentially long PolyP with no effect on its content in cells (Ogawa et al., 2000a). The PHM5 protein has a similarity with the yeast endopolyphosphatase, which was characterized by Kumble and Kornberg (1996).

The pleiotrophic effect of the genes involved in phosphorus metabolism is not a surprise, because this element is vital for living organisms. PolyP as a phosphate and energy reserve may be involved in different regulatory processes, and mutations in the genes related to PolyP metabolism might influence many aspects of cellular regulation. For example, disruption of the gene YOL002c results in accumulation of PolyP to a much higher level than in the wild-type cells. In addition, this mutant shows the induction of many genes involved in fatty acid metabolism, phosphate-signaling pathways and nystatin resistance (Karpichev et al., 2002).

Two ‘bursts’ in the production of acid-soluble PolyPs were shown to occur during the growth of some *S. cerevisiae* strains on a medium containing glucose and galactose under aerobic conditions (Solimene et al., 1980). The respiratory deficient mutant, however, had only one PolyP ‘burst’, which indicated that the accumulation of PolyP produced in the first ‘burst’ depended on the active mitochondrial function (Solimene et al., 1980).

Many publications have reported the absence of PolyPs in mutants with disturbed vacuolar functions (Westenberg et al., 1989; Beauvoit et al., 1991; Shirahama et al., 1996). It
Figure 8.25 The effects of mutations in the genes *PPX1* and *PPN1* on the cell growth, endopolyphosphatase activity and PolyP content in cells of *Saccharomyces cerevisiae* (Sethuraman et al., 2001): WT, parent strain; *ppx1Δ*, mutant with inactivated *PPX1* gene; *ppn1Δ*, mutant with inactivated *PPN1* gene; *ppn1Δ ppx1Δ*, double-mutant. (a) growth at 30 °C in a glucose–peptone–yeast-extract-containing (YPD) medium. (b) Endopolyphosphatase *PPN1* activity (10⁶ units per mg of protein) in samples from (a). (c) PolyP levels in samples from (a). Frozen cells were thawed and suspended in equal volumes of extraction buffer (50 mM Tris–HCl, pH 7.4, 100 mM KCl, 1 mM EDTA). PolyP was extracted from the lysate with a buffer of phenol–chloroform, saturated with 10 mM Tris–HCl, pH 7.5, and 1 mM EDTA, followed by chloroform and ether extractions.
Figure 8.26 PolyP chain lengths in mutant strains determined by electrophoresis in PAGE (Sethuraman et al., 2001). Cells were grown in a synthetic medium containing 7.35 mM P; WT, parent strain; \(ppx1\Delta \), mutant with inactivated \(PPX1 \) gene; \(ppn1\Delta \), mutant with inactivated \(PPN1 \) gene; \(ppx1\Delta ppn1\Delta \), double-mutant.

should be noted, however, that in most cases there are ‘NMR-visible’ PolyPs (Beauvoit et al., 1991; Shirahama et al., 1996), which represent only a part of the yeast cell PolyP. In the work of Westenberg et al. (1989), the yeast \(S.\ cer\text{er}visiae \) was grown on a specific culture medium with arginine as a nitrogen source. As was shown earlier, under these growth conditions the greater part of the cellular PolyP is localized in vacuoles (Matile, 1978).

There is an example of another effect of mutation of the vacuolar PolyP. \(S.\ cer\text{er}visiae \), with a defect of the \(SPT7 \) gene, became less sensitive to nickel and had a highly elevated amount of PolyPs in the vacuoles (Nishimura et al., 1999).

Therefore, the effects of mutations in the vacuolar functions on PolyP metabolism in the whole cell need further investigation.

The genes of the PHO system, including acid and alkali phosphatases, are regulated by the \(P_i \) content in the medium. Under \(P_i \) starvation, the activity of the acid phosphatase increases \(\sim 500\)-fold and that of the alkali phosphatase \(\sim 60\)-fold (Yoshida et al., 1987). It was assumed that low-molecular-weight PolyP might also participate in the regulation of expression of the genes encoding multiple yeast phosphatases (Bostian et al., 1983). A possible interrelation between the vacuolar PolyP, exopolyphosphatase and the PHO system
Other fungi (mould and mushrooms) 165

was proposed (Vagabov, 1988). However, the ways of involving phosphatases in PolyP metabolism in yeast are still obscure. For example, the strains of Schizosaccharomyces pombe with mutations in the structural genes for three different phosphatases, i.e. PHO1, PHO2 or PHO3, degraded PolyPs at the same rate as the wild-type strain during phosphate starvation and showed the same type of over-compensation when phosphate was added again (Müller et al., 1992).

To summarize, it must be said that mutational analysis and modern genetic methods have proved to be a great success in studies of PolyP metabolism in yeast and will provide new knowledge in this field in future. Data on the role of Pᵢ transport systems in PolyP metabolism of yeast have been summarized in a recent review (Persson et al., 2003).

In conclusion, it should be noted that PolyP accumulation and utilization in yeast depends strongly on the culture conditions and cell development stage. A great difference has been observed in the dynamics of separate PolyP fractions and in the effects of some culture conditions on the PolyP content in some cellular organelles. Each compartment of the yeast cell possesses its own exopolyphosphatases (see Chapter 6) and probably its own endopolyphosphatases and other PolyP-metabolizing enzymes. One of the intriguing questions in the study of PolyP metabolism in yeast is the pathways of its biosynthesis. Despite many reports that have shown polyphosphate kinase activity in these organisms (Felter and Stahl, 1973; Shabalin et al., 1979; Kornberg et al., 1999; McGrath and Quinn, 2000), this enzyme was not purified and no gene encoding it was found in yeast genomes (Kornberg, 1999; Zhang et al., 2002). The role of this activity in PolyP accumulation in yeast is still obscure. The activity of other PolyP-synthesizing enzymes, such as 1,3-diphosphoglycerate kinase and dolichyl polyphosphate kinase, is not so significant for providing the synthesis of all PolyPs in yeast cells. An assumption was made that exopolyphosphatases or endopolyphosphatase may synthesize PolyP in a similar way to ATPases or pyrophosphatases by a reverse reaction (Kulaev and Vagabov, 1983; Vagabov et al., 2000; Kulaev et al., 1999). However, no evidence for the actual existence of such a process has been obtained. There is no doubt, however, that PolyP synthesis in yeast is dependent on the energetic status of the cell, in particular, on the ionic gradients on the membranes.

8.11 Other Fungi (Mould and Mushrooms)

The metabolism of PolyP has been investigated during ontogenetic development in many fungi (Bajaj et al., 1954; Belozersky and Kulaev, 1957; Nishi, 1961; Harold, 1962a,b; Kulaev et al., 1960a-c; 1961; 1966a, 1968; 1970a–d); Kritsky and Kulaev, 1963; James and Casida, 1964; Kulaev and Uryson, 1965; Kritsky et al., 1965a,b, 1968, 1972; Mel’gunov and Kulaev, 1971; Kulaev, 1973; Okorokov et al., 1973a,b; Trilisenko et al., 1980, 1982a,b). It was revealed that the rapid synthesis of acid-insoluble PolyPs took place during the germination of fungal spores. Using ³²P it was shown that the formation of highly polymerized PolyP at this development stage involves utilization of less polymeric acid-soluble PolyP, resulting in a complete conversion of the latter into an acid-insoluble form (Kulaev and Belozersky, 1962a,b). During this period of development, the endopolyphosphatase was found to be inactive in mould fungi (Kritsky et al., 1972). This seems to facilitate to a great extent the accumulation of large amounts of PolyPs. On the other hand, at this time PolyPs began to be utilized for the synthesis of a variety of compounds. Nishi (1961) showed that PolyP utilization for the synthesis of nucleotides, sugar phosphates and RNA had already started.
Peculiarities of polyphosphate metabolism during the first few hours of spore germination in *Aspergillus niger*. The utilization of PolyP during the active RNA synthesis was also demonstrated in other fungi (Kulaev et al., 1960a-c; Harold, 1962b, 1966; Kritsky et al., 1965a,b, 1968; Kulaev and Vagabov, 1983).

A 31P NMR spectroscopic analysis of the PolyP pool in cellular and nuclear extracts of *Physarum polycephalum* (Pilatus et al., 1989) demonstrated that plasmodia and cysts contained PolyP with an average chain length of about 100 residues. During sporulation, this PolyP degrades to a lower one with a chain length of ~ 10 residues. PolyP was degraded at a sufficient amount of P_i, and it was concluded that the PolyP serves to supply energy for biosynthetic processes during sporulation.

Some authors have suggested that PolyP utilization during spore germination provided the required osmotic pressure for the ‘explosion’ of cysts and penetration of germ cells of pathogenic fungi into the cells of host organisms (Kulaev and Vagabov, 1983). It was proposed that such osmotic pressure developed during PolyP hydrolysis in the lamellae of the fruiting bodies of *Agaricus bisporius* involved in spore dissemination (Kulaev et al., 1960a,b; Kritsky et al., 1965a,b). Gezelius et al. (1973) showed that large amounts of PolyP were synthesized during the transition of *Dictyostelium discoideum* from the amoeboid to the aggregated stage.

All these data suggested that PolyPs are very important for the development of fungi, especially spore formation and germination. Tables 8.4–8.6 and Figures 8.27 and 8.28 show the changes in PolyP content at different stages of development in some fungi.

Under vegetative growth, fungal cells, like yeast cells, possess PolyPs of different chain lengths, belonging to acid-soluble, salt-soluble, alkali-soluble and acid-insoluble fractions and which are localized in different cell compartments. PolyPs were found in the vacuoles, cell envelope and nuclei of fungi (see Chapter 5). The dynamics of the PolyP content in three different strains of *N. crassa* are illustrated in Figure 8.28. It can be seen that different fractions of PolyP have individual changes during the culture growth. The slime variant without the cell wall is characterized by the lower content of the most high-molecular-weight fractions, while the mutant with the lower exopolyphosphatase activity is characterized by the higher content of PolyP (Trilisenko et al., 1980, 1982a,b).

Table 8.4 PolyP content in the cells of *Endomyces magnusii* (Kulaev et al., 1967a), *Neurospora crassa* (Kulaev et al., 1966a) and in the fruiting bodies of *Giramitra esculenta* (Kulaev et al., 1960b), expressed as mg of P per g of dry biomass.

<table>
<thead>
<tr>
<th>PolyP fraction</th>
<th>Extractant</th>
<th>E. magnusii cells, 12 h growth</th>
<th>N. crassa mycelia, 17 h growth</th>
<th>G. esculenta fruiting bodies</th>
</tr>
</thead>
<tbody>
<tr>
<td>PolyP(I)</td>
<td>0.5 M HClO$_4$, 0–4 °C</td>
<td>1.10</td>
<td>0.62</td>
<td>0.00</td>
</tr>
<tr>
<td>PolyP(II)</td>
<td>Saturated NaClO$_4$ solution, 0–4 °C</td>
<td>0.90</td>
<td>1.24</td>
<td>1.52</td>
</tr>
<tr>
<td>PolyP(III)</td>
<td>NaOH, pH 9, 0–4 °C</td>
<td>0.20</td>
<td>0.12</td>
<td>0.24</td>
</tr>
<tr>
<td>PolyP(IV)</td>
<td>NaOH, pH 12, 0–4 °C</td>
<td>0.90</td>
<td>0.82</td>
<td>0.01</td>
</tr>
<tr>
<td>PolyP(V)</td>
<td>10% HClO$_4$, 100 °C</td>
<td>0.40</td>
<td>0.00</td>
<td>—</td>
</tr>
<tr>
<td>Total PolyP</td>
<td>—</td>
<td>3.50</td>
<td>2.80</td>
<td>1.77</td>
</tr>
<tr>
<td>Total P</td>
<td>—</td>
<td>17.3</td>
<td>15.6</td>
<td>6.03</td>
</tr>
</tbody>
</table>
Table 8.5 PolyP content in resting spores and mycelia of a 24 h culture of *Penicillium chrysogenum* under different conditions of growth (Kulaev *et al*., 1959), expressed as mg of P per g of dry biomass.

<table>
<thead>
<tr>
<th>PolyP fraction</th>
<th>Extractant</th>
<th>Spores</th>
<th>Mycelia on synthetic medium</th>
<th>Mycelia on medium containing maize extract</th>
</tr>
</thead>
<tbody>
<tr>
<td>PolyP(I)</td>
<td>1 % TCA, 0–4 °C</td>
<td>4.90</td>
<td>0.09</td>
<td>1.07</td>
</tr>
<tr>
<td>PolyP(II)</td>
<td>Saturated NaClO₄ solution, 0–4 °C</td>
<td>2.18</td>
<td>1.75</td>
<td>1.01</td>
</tr>
<tr>
<td>PolyP(III) + PolyP(IV) + PolyP(V)</td>
<td>10 % HClO₄, 100 °C</td>
<td>0.44</td>
<td>8.18</td>
<td>1.96</td>
</tr>
<tr>
<td>Total PolyP</td>
<td>—</td>
<td>7.52</td>
<td>10.02</td>
<td>4.04</td>
</tr>
<tr>
<td>Total P</td>
<td>—</td>
<td>16.15</td>
<td>28.28</td>
<td>44.27</td>
</tr>
</tbody>
</table>

High-resolution 31P NMR spectroscopy was employed to investigate the effects of growth stage and environmental osmolarity on the changes in PolyP metabolism in intact *Neurospora crassa* cells (Yang *et al*., 1993). The ratio of PolyP to P$_i$ in the vacuoles increased from 2.4 to 13.5 in *N. crassa* as cells grew from the early logarithmic phase to the stationary phase. Hypo-osmotic shock of *N. crassa* initiated growth-dependent changes, including (i) rapid hydrolysis of PolyP with a concomitant increase in the concentration of the cytoplasmic phosphate, (ii) an increase in cytoplasmic pH, and (iii) an increase in vacuolar pH. The early logarithmic-phase cells produced the most dramatic response, whereas the stationary-phase cells appeared to be recalcitrant to the osmotic stress. Thus, 95 and 60 % of the PolyP in the early- and mid-logarithmic-phase cells, respectively, disappeared in response to hypoosmotic shock, but little or no hydrolysis of PolyP occurred in the stationary cells. The osmotic stress-induced PolyP hydrolysis and pH changes in the early- and mid-logarithmic-phase cells were reversible, thus suggesting that these changes to relate to environmental osmolarity (Yang *et al*., 1993).

One of the interesting features of PolyP metabolism in fungi is the interrelation between the metabolism and antibiotic biosynthesis (Kulaev, 1986). It was demonstrated that in high-productive strains, under intensive synthesis of antibiotics, the PolyP content was lower than in low-productive strains at the same growth stage (Figure 8.29). This fact indicated that PolyP is probably utilized as an energy source in the processes of antibiotic biosynthesis, or there is a competitive relationship between the biosynthetic pathways of antibiotics and PolyP for the energy sources (Kulaev, 1986).

8.12 Algae

8.12.1 Localization and Forms in Cells

Being eukaryotes, algae contain PolyPs in different cell compartments. The intracellular localization of PolyPs in volutine granules of *Chlorella fusca* and *Chlorella pyrenoidosa*
Table 8.6 PolyP content of spores and fruiting bodies of the mushroom *Agaricus bisporus* at various stages of development (Kulaev *et al.*, 1960b), expressed as mg of P per g of dry biomass.

<table>
<thead>
<tr>
<th>PolyP fraction</th>
<th>Extractant</th>
<th>1.5 days growth (undifferentiated)</th>
<th>3–4 days growth (fully differentiated)</th>
<th>8 days growth (vigorously sporulating)</th>
<th>Spores leaving the fruiting bodies</th>
</tr>
</thead>
<tbody>
<tr>
<td>PolyP(I)</td>
<td>1 % TCA, 0–4 °C</td>
<td>1.69</td>
<td>1.15</td>
<td>2.38</td>
<td>0.24</td>
</tr>
<tr>
<td>PolyP(II)</td>
<td>Saturated NaClO₄ solution, 0–4 °C</td>
<td>1.76</td>
<td>1.10</td>
<td>2.56</td>
<td>0.97</td>
</tr>
<tr>
<td>PolyP(III)</td>
<td>NaOH, pH 9, 0–4 °C</td>
<td>0.31</td>
<td>0.27</td>
<td>0.61</td>
<td>0.44</td>
</tr>
<tr>
<td>PolyP(IV)</td>
<td>NaOH, pH 12, 0–4 °C</td>
<td>0.11</td>
<td>0.10</td>
<td>0.09</td>
<td>0.09</td>
</tr>
<tr>
<td>PolyP(V)</td>
<td>10 % HClO₄, 100 °C</td>
<td>0.18</td>
<td>0.02</td>
<td>0.03</td>
<td>0.24</td>
</tr>
<tr>
<td>Total PolyP</td>
<td>—</td>
<td>4.05</td>
<td>2.64</td>
<td>5.67</td>
<td>1.98</td>
</tr>
<tr>
<td>Total P</td>
<td>—</td>
<td>11.44</td>
<td>8.80</td>
<td>11.28</td>
<td>5.03</td>
</tr>
</tbody>
</table>
Figure 8.27 Changes in the content of PolyP fractions and RNA during the growth of a culture of *Neurospora crassa* (Chernysheva et al., 1971): PP₁, PP₂, PP₄ and PP₅ represent the PolyP(I), PolyP(II), PolyP(IV) and PolyP(V) fractions, respectively.

was demonstrated by electron microscopic methods (Atkinson et al., 1974; Peverly et al., 1978). By X-ray microanalysis, phosphorus-containing granules were observed in the cytoplasm, vacuoles and chloroplasts of *Scenedesmus quadricauda* (Vörös and Zachleder, 1984). In *Cosmarium*, PolyP was revealed in cytoplasmic granules (Elgavish and Elgavish, 1980). PolyP was identified in the vacuoles of *Ulva latuca*, and this compartment was also rich in Mg²⁺ (Lundberg et al., 1989). The chain length of the PolyP in this organism was determined to be ~20 residues (Weich et al., 1989).

A ³¹P NMR spectroscopic study of the living cells of *Chlorella fusca* allowed conclusions concerning the localization and structural features of its particular PolyP. The signal of the core PolyP groups of this organism had a broad width. This indicated that the PolyP may be present in cell compartments under different chemical conditions, may have different chain lengths cation complexations, and may also be subjected to rapid exchange processes (Sianoudis et al., 1986). A high concentration of EDTA or adjustment of the pH to 12.9 led to a partial shift of the core PolyP signal. Thus, at least some part of this signal originated from PolyP located outside the cytoplasmic membrane, because this form was easily accessible to environment changes (Sianoudis et al., 1986). These some workers also showed the importance of divalent cations for structural organization of the PolyP in *Chlorella fusca* but did not exclude the presence of monovalent complexed PolyP (Sianoudis et al., 1986). Peverly et al. (1978) concluded that divalent cations played only a minor role in the synthesis of vacuolar PolyP granules in *Chlorella pyrenoidosa*, while K was an essential component.

The alga *Chlamydomonas reinhardii* contains cytoplasmic vacuoles that are often filled with dense granules. Purified granules contained PolyP complexed with calcium and
Figure 8.28 Changes in the content of PolyP fractions during growth of *Neurospora crassa* strains ad-6 (parent strain) and 30,19-3 (a leaky mutant in exopolyphosphatase), and a slime mutant devoid of the cell envelope (Trilisenko *et al.*, 1980; 1982a,b): (◦) growth; (●) PolyP content in different fractions.

Magnesium as the predominant inorganic components (Komine *et al.*, 2000). These organelles were similar to acidocalcisomes of other microorganisms (Ruiz *et al.*, 2001b). X-ray microanalysis of the electron-dense vacuoles or PolyP bodies of *C. reinhardtii* showed large amounts of phosphorus, magnesium, calcium and zinc. Immunofluorescence microscopy revealed a vacuolar-type proton pyrophosphatase (H⁺–PPase) in this compartment. Purification of the electron-dense vacuoles using iodixanol density gradients showed preferential localization of H⁺–PPase and V–H⁺–ATPase activities, in addition to high concentrations of PP, and short- and long-chain PolyPs (Ruiz *et al.*, 2001b).
As in other organisms, the PolyP content in algal cells depends a great deal on the growth stage, being the lowest during the exponential phase and the highest in older cultures (Smillie and Krotkov, 1960; Vagabov and Serenkov, 1963). However, the dynamics of PolyP fractions may be diverse during growth and development. For example, Table 8.7 shows the changes in the content of P_i and different PolyP fractions in the gigantic unicellular alga *Acetabularia crenulata* (Kulaev et al., 1975). At early stages of its growth, only acid- and salt-soluble PolyPs were present. At the stages of cyst formation, characterized by intensive synthesis of cell wall components, alkali-soluble and hot-perchloric-acid-extractible PolyPs appeared.
Table 8.7 The contents of PolyPs and P\textsubscript{i} in *Acetabularia crenulata* at different stages of development (Kulaev *et al*., 1975). The stages of growth were as follows: (1) young cells, 1.5–2 cm long; (2) cells 2.5–3 cm long, up to 2 mm in diameter; (3) cells with umbellulles filled with secondary nuclei; (4) cells with mature umbellulles filled with cysts.

<table>
<thead>
<tr>
<th>Phosphate content (µg P (cell(^{-1})))</th>
<th>Stages of growth</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>P\textsubscript{i}</td>
<td>0.52</td>
</tr>
<tr>
<td>PolyP(I) (acid-soluble)</td>
<td>0.67</td>
</tr>
<tr>
<td>PolyP(II) (salt-soluble)</td>
<td>0.12</td>
</tr>
<tr>
<td>PolyP(III) (alkali soluble)</td>
<td>0.0</td>
</tr>
<tr>
<td>PolyP(V) (hot perchloric acid extract)</td>
<td>0.0</td>
</tr>
<tr>
<td>Total PolyP</td>
<td>0.79</td>
</tr>
</tbody>
</table>

Algae were shown to have a correlation between PolyP and nucleic acid biosynthesis during growth, similar to that revealed in fungi. Close links between the PolyP and RNA contents during orthogenetic development were demonstrated in *Euglena* (Smillie and Krotkov, 1960) and *Chlorella pyrenoidosa* (Hermann and Schmidt, 1965). During the growth and development of synchronous cultures of *Chlorella pyrenoidosa*, the accumulation of PolyP, RNA and DNA took place in parallel, although PolyP biosynthesis during the first few hours of growth outpaced to some extent the synthesis of nucleic acids (Hermann and Schmidt, 1965). The work of Miyachi and co-workers (Miyachi, 1961; Miyachi and Miyachi, 1961; Miyachi and Tamiya, 1961; Miyachi *et al*., 1964) showed that only some of the PolyP fractions with specific cellular localization were involved in RNA and DNA synthesis. These investigations, together with those of Okuntsov and Grebennikov (1977), showed that the metabolism of the various PolyP fractions in *Chlorella* proceeded differently in the dark and in the light, as well as in the presence and absence of P\textsubscript{i} in the medium.

8.12.3 The Influence of Light and Darkness

The fact that algae are autotrophs has a profound effect on their PolyP metabolism. The early work of Wintermans (1954, 1955) and subsequently of other researchers (Stich, 1953, 1955, 1956; Nihei, 1955, 1957; Vagabov and Serenkov, 1963; Baslavskaya and Bystrova, 1964; Kulaev and Vagabov, 1967; Kanai and Simonis, 1968; Lysek and Simonis, 1968; Sundberg and Nilshammer-Holmvall, 1975; Ullrich and Simonis, 1969) showed that the formation of PolyP and PolyP-containing granules in algae proceeded much more rapidly in the light than in the dark. It was shown that PolyP synthesis in *Ankistodesmus braunii* (Ullrich and Simonis, 1969) was strongly stimulated as the oxygen concentration in the medium increased. These observations lead to the conclusion that there is a close connection between the formation of PolyP in algae and photosynthesis. However, it is not possible
yet to come to a firm conclusion as to whether the accumulation of PolyP in algae in the light is directly linked to photosynthesis itself, or if their formation is merely promoted by increased ATP (and perhaps pyrophosphate) during photosynthetic phosphorylation.

Kanai and Simonis (1968) showed that, although 32P incorporation in PolyP proceeded more rapidly in the light and decreased in darkness, PolyP synthesis did continue to some extent. It was concluded that PolyP synthesis in algae occurred without the involvement of photosynthesis, although it was strongly promoted by the latter process. Similar results were obtained by Domanski-Kaden and Simonis (1972) on Ankistrodesmus braunii, and by Overbeck (1961, 1962) on Scenedesmus quadricauda. The fact that photosynthesis is not obligatory for PolyP accumulation was demonstrated in experiments with Euglena (Smillie and Krotkov, 1960). Substantial amounts of PolyP were found in this organism under heterotrophic growth (Smillie and Krotkov, 1960). Furthermore, it was shown that in Scenedesmus obliquus PolyP was produced by glycolytic phosphorylation when this alga was grown in the dark (Kulaev and Vagabov, 1967).

It can therefore be concluded that some part, if not all, of the PolyP formed in the algal cells is produced independent of photosynthesis and photosynthetic phosphorylation. A further contribution to the understanding of this problem was made by the investigations of Miyachi and co-workers (Miyachi, 1961; Miyachi and Miyachi, 1961; Miyachi and Tamiya, 1961; Miyachi et al., 1964) which has shown that only one of the four PolyP fractions of Chlorella was formed in the light. This was fraction C, which was precipitated by neutralization of a 2N KOH extract with HClO$_4$ in the presence of KClO$_4$. This fraction was localized, in the opinion of the authors, either in chloroplasts or in their vicinity (Miyachi et al., 1964). Fraction A (extractable by 8 % trichloracetic acid) was found in volutine, and its accumulation depended on photosynthesis only to a certain extent, probably because this fraction was derived from fraction C through degradation. The biosynthesis and degradation of the alkali-soluble fractions B and D (see Chapter 2) were shown to be absolutely unrelated to photosynthesis. Their metabolism depended on the presence of P$_i$ in the medium. Similar results were obtained with Ankistrodesmus braunii (Kanai and Simonis, 1968).

Miyachi and co-workers (Miyachi, 1962; Miyachi and Miyachi, 1961; Miyachi and Tamiya, 1961; Miyachi et al., 1964) have shown that utilization of different PolyP fractions for nucleic acid biosynthesis in Chlorella is different in the light and in the dark. In the opinion of these authors, PolyPs of different fractions are involved in the biosynthesis of nucleic acids and other compounds in different ways. In the light, fraction C is a phosphorus donor for the biosynthesis of chloroplast DNA, while fraction A is involved in the synthesis of nuclear DNA. RNA is not formed in this alga from PolyP under conditions of P$_i$ sufficiency, although PolyPs of fractions B and D are utilized for RNA biosynthesis when P$_i$ is absent in the medium. In the light, the PolyPs of these fractions are hydrolysed to P$_i$, which is then utilized for the biosynthesis of RNA and other compounds. In the dark and in the absence of P$_i$, PolyP seems to be able to provide phosphate for RNA synthesis.

Some authors doubt the possibility of a direct interrelation between PolyP and photosynthesis in algae (Rubtsov et al., 1977; Rubtsov and Kulaev, 1977). The following facts support this point of view. No high-molecular-weight PolyP was found in the chloroplasts of Acetabularia mediterranea (Rubtsov et al., 1977). The inhibitor analysis and detection of polyphosphate kinase activity in this alga (Rubtsov and Kulaev, 1977) point to the fact that PolyP is not directly, but rather indirectly, connected with the photosynthesis through the formation of ATP, which provides energy for P$_i$ transport and PolyP synthesis.
8.12.4 The Effects of P_i Limitation and Excess

Many algae were shown to accumulate and store large amounts of PolyPs when grown under conditions of unlimited available P_i, namely *Scenedesmus* (Rhee, 1973), *Cosmarium* (Elgavish <i>et al.</i>, 1980), *Chlorella* (Miyachi and Tamiya, 1961) and *Heterosigma* (Watanabe <i>et al.</i>, 1987; 1988; 1989). Overbeck (1961, 1962) showed that *Scenedesmus quadricauda* was able to accumulate excessive amounts of PolyPs in the dark when grown on a phosphate-containing medium after P_i starvation. In other words, he demonstrated that algae, like heterotrophs, display a hypercompensation (phosphate overplus) effect.

It is probable that PolyP in algae can play the role of phosphorus reserve, as in other organisms. It was observed that the granules disappeared from the vacuoles of *Scenedesmus quadricauda* under phosphate starvation (Voříšek and Zachleder, 1984). If *Chlorella* was grown in the light and on a P_i-containing medium, it did not utilize PolyP for nucleic acid synthesis, although such utilization occurred under P_i starvation (Baker and Schmidt, 1964a,b).

The results of Lundberg <i>et al.</i> (1989) concerning P_i uptake and storage demonstrated that PolyP formed the main P_i store in the marine macroalga *Ulva lactuca*. The short-chain ‘NMR-visible’ PolyP in this alga was synthesized when the organism was grown in seawater supplemented by P_i, and utilized to support the growth when the organism was transferred to a P_i-deficient medium. However, this organism might possess another P_i storage pool, namely an amorphous calcium phosphate in the cell wall (Weich <i>et al.</i>, 1989).

The effect of starvation and the subsequent addition of phosphate-containing medium on phosphorus-containing compounds was studied by 31P NMR spectroscopy of perchloric acid extracts and intact cells of *Heterosigma akashiwo* (Watanabe <i>et al.</i>, 1987, 1988, 1989). The PolyP content and chain length decreased under starvation and rapidly increased on P_i restoration in the medium (Table 8.8).

This phenomenon, known as ‘luxury storage’, is important for development of the algae population under P_i-starved conditions, while the P_i concentrations in the coastal zones are influenced by such factors as land run-off and wastewaters. When the phosphate concentration in the water becomes low, the PolyP store may be used for further synthesis. The alga *Heterosigma akashiwo* has a specific feature in its phosphate metabolism during its vertical migrations in natural sea water (Watanabe <i>et al.</i>, 1987) and under simulation of such migrations in a (laboratory) tank (Watanabe <i>et al.</i>, 1988). At night, this alga migrated to the lower phosphate-rich water layer and took up P_i, which is used for elongation of the PolyP chains. In the daytime, the alga migrated to the P_i-depleted surface water and

<table>
<thead>
<tr>
<th>Conditions/time</th>
<th>Sugar P (%)</th>
<th>P<sub>i</sub> (%)</th>
<th>ATP (%)</th>
<th>PolyP (%)</th>
<th>PolyP (fmol cell<sup>-1</sup>)</th>
<th>PolyP average chain length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starvation</td>
<td>33.5</td>
<td>21.5</td>
<td>5.6</td>
<td>5.8</td>
<td>76</td>
<td>10</td>
</tr>
<tr>
<td>2 h after P<sub>i</sub> addition</td>
<td>12.1</td>
<td>10.9</td>
<td>7.4</td>
<td>43.7</td>
<td>108</td>
<td>14</td>
</tr>
<tr>
<td>1 d after P<sub>i</sub> addition</td>
<td>9.0</td>
<td>9.5</td>
<td>—</td>
<td>59.1</td>
<td>222</td>
<td>20</td>
</tr>
<tr>
<td>3 d after P<sub>i</sub> addition</td>
<td>9.2</td>
<td>8.4</td>
<td>—</td>
<td>63.3</td>
<td>185</td>
<td>17</td>
</tr>
</tbody>
</table>
utilized the accumulated PolyPs for photophosphorylation by shortening the PolyP chains (Watanabe et al., 1988). During P_i uptake, *Heterosigma akashiwo* required Mn^{2+}, which was excreted from cells after the PolyP pool had been saturated (Watanabe et al., 1989).

8.12.5 Changes in Polyphosphate Content under Stress Conditions

The ammonium-induced cytoplasmic alkalization in the unicellular algae *Dunaliella salina* resulted in degradation of long-chain PolyPs to PolyP$_3$ (Pick et al., 1990; Bental et al., 1990; Pick and Wess, 1991). The hydrolysis was shown to correlate with the recovery of cytoplasmic pH and might provide the ‘pH-stat’ mechanism to counterbalance the alkaline stress.

A decrease of the PolyP level in *Ulva lactuca* was observed at high external nitrate concentrations during cultivation in continuous light (Lundberg et al., 1989). These authors assumed that either nitrate might inhibit the P_i uptake or, in the case where nitrate was the only nitrogen source, the energy of the PolyP could be used for nitrate uptake and reduction (Lundberg et al., 1989).

The alga *Phaerodactilum tricornutum* was found to respond to hyperosmotic stress by a marked elongation of PolyP and a decrease in its total amount, while exposure to hyposmotic stress resulted in a higher content of shorter PolyPs and an increased total PolyPs content (Leitao et al., 1995). It is probable that, such variations might allow the adjustment of the intracellular osmotic pressure to an extracellular one.

In conclusion, it should be said that the PolyP-metabolizing enzymes in algae have been little studied. An activity, which transferred P_i from PolyP to ADP, was observed in cell-free extracts from *Chlorella* (Iwamura and Kuwashima, 1964) and *Acetabularia* (Rubtsov and Kulaev, 1977). Exopolyphosphatase activity was found in *Acetabularia* (Rubtsov and Kulaev, 1977), while polyphosphate glucokinase activity was not found in algae (Uryson and Kulaev, 1970).

It is clear, however, that the intracellular concentration of ATP and P_i, as well as the P_i level in the culture medium, exert a regulatory effect on the biosynthesis and degradation of PolyPs in algae such as heterotrophs (Curnutt and Schmidt, 1964a,b; Miyachi, 1961; Miyachi and Miyachi, 1961; Miyachi and Tamiya, 1961; Miyachi et al., 1964; Rubtsov and Kulaev, 1977; Kuhl, 1960, 1962, 1976). There is little doubt that PolyP metabolism in algae is strongly influenced by light (Miyachi and Miyachi, 1961; Miyachi et al., 1964) and oxygen concentration in the medium (Ullrich, 1970).

8.13 Protozoa

PolyP in protozoa was found long ago (Ebel et al., 1958b; Mattenheimer, 1958; Janakidevi et al., 1965; Rosenberg, 1966). Its metabolism was studied with the purpose of searching for specific biochemical peculiarities of parasitic representatives of this taxon, which could offer prospects for drug development.

The intracellular levels of short- and long-chain PolyPs were measured by means of polyphosphate glucokinase assay in *Leishmania major* promastigotes incubated in a
phosphate-free medium (Blum, 1989). The short-chain PolyP content did not differ between the cells incubated for 1 h in the absence of exogenous substrate or in the presence of glucose or glycerol. The long-chain PolyP content, however, was lower in cells incubated without glucose than in cells incubated with glucose and was also lower in cells incubated for 1 h with glycerol, as compared with freshly washed cells. The Pi and PPi increase (up to 61 %) which occurred in promastigotes incubated in the absence of an exogenous substrate could have arisen from the concomitant decrease in the long-chain PolyP content (Blum, 1989).

Leishmania major promastigotes contain electron-dense vacuoles (LeFurgey et al., 1990). The elemental compositions of these vacuoles and the cytoplasm were determined by electron probe X-ray microanalysis. The electron-dense vacuoles are rich in P, presumably present as PolyP, while Mg\(^{2+}\) was about nine times higher than its cytoplasmic level and its content was enough to neutralize most of the negative charge of PolyP. The electron-dense vacuoles also contain appreciable amounts of Ca\(^{2+}\) and Zn\(^{2+}\), which are not detectable in the cytoplasm, as well as Na\(^+\), K\(^+\) and Cl\(^-\) (the latter two in concentrations below that in the cytoplasm). These results suggest that the vacuolar membranes have at least one cation transport system. Incubation of the promastigotes for 1 h in the absence of phosphate, independent of the presence or absence of glucose, did not cause any significant changes in the vacuolar contents of phosphorus, magnesium or zinc (LeFurgey et al., 1990).

The interaction of *Entamoeba histolytica* with collagen induces the intracellular formation and the release of electron-dense granules containing collagenase activity, which is important for pathogenicity of this parasite. Purified granules are a complex of mainly cationic proteins, which contains numerous proteolytic activities, actin, and small molecules such as P\(_i\), PP\(_i\) and cations (Leon et al., 1997). It is not improbable that such granules also contain some quantities of PolyP.

An unusual characteristic of some protozoa is the presence in their cells of a specific organelle, named as acidocalcisome (Docampo and Moreno, 2001). Acidocalcisome is an electron-dense acidic organelle, which contains a matrix of pyrophosphate and PolyP with bound calcium and other cations. Its membrane possesses a number of pumps and exchangers for the uptake and release of these components. Acidocalcisome is possibly involved in PolyP and cation storage and in the adaptation of these microorganisms to environmental stress (Docampo and Moreno, 2001). A \(^{31}\)P NMR spectroscopic study revealed the high levels of PP\(_i\), PolyP\(_3\) and PolyP\(_5\) in perchloric-acid extracts of *Trypanosoma brucei*, *Trypanosoma cruzi* and *Leishmania major* (Moreno et al., 2000). The \(^{31}\)P NMR spectra of purified acidocalisomes of these organisms indicated the presence of PolyP with an average chain length of 3–4 (Moreno et al., 2000).

In *Trypanosoma cruzi*, the PolyP was represented by a millimolar level of PolyP with a chain length of \(~50\) residues and a micromolar level of longer PolyPs with a chain length of about 700–800 residues (Ruiz et al., 2001a). The PolyP was mostly localized in acidocalcisomes. The level of PolyP was measured at different development stages of *Trypanosoma cruzi* (Ruiz et al., 2001a). A rapid increase in the PolyP level was observed at differentiation of trypomastigote to amastigote and in the lag phase of epimastigotes growth. Both the short- and long-chain PolyPs content increased during these development stages. The PolyP content rapidly decreased after the epimastigotes-resumed growth.

Similar to *Trypanosoma cruzi*, the acidocalcisomes of *Toxoplasma gondii* contained PolyPs with an average chain length \(~50\) residues at the millimolar level and a micromolar
level of longer PolyPs with a chain length of about 700–800 residues (Rodrigues et al., 2002b). The level of PolyP in both organisms rapidly decreased upon the exposure of the parasites to a calcium ionophore (ionomycin), to an inhibitor of vacuolar V-ATPase (bafilomycin A1), or to the alkalization of the medium by NH₄Cl (Rodrigues et al., 2002b). Thus, the PolyP level in acidocalcisomes may depend on ΔµH⁺ on the membrane of these organelles.

High levels of short-chain (∼ 20 mM) and long-chain (∼ 60 mM) PolyPs were detected in *Leishmania major* promastigotes. An exopolyphosphatase has been purified and cloned from this organism, which resembles the PPX1 enzyme from *S. cerevisiae* in its properties and amino acids sequence (Rodrigues et al., 2002a). It was proposed that the characteristics of exopolyphosphatase and PolyP metabolism revealed in pathogenic protozoa might facilitate the development of novel antiparasitic agents (Rodrigues et al., 2002a).

8.14 Higher Plants

Despite the fact that PolyPs have been found in a wide range of tissues of the higher plants (see Chapter 3), very little is known about PolyP metabolism in these organisms. For example, Khomlyak and Grodzinskii (1970, 1972) have shown that ³²P, introduced into tomato leaves via the steam conductive system is first incorporated into the acid-soluble PolyP fraction and subsequently into the acid-insoluble one. PolyP-metabolizing enzymes have been observed in many higher plants (Pierpoint, 1957a,b; Rotenbach and Hinkelmann, 1954; Jungnickel, 1973) Two different exopolyphosphatases were observed in plants (Jungnickel, 1973). One of these was a constitutive enzyme, while the other appeared when the plant was grown under conditions of phosphorus deprivation, i.e. it was inducible. Some data on the relation of PolyP and nucleic acid metabolisms in plants were obtained by Schmidt and co-workers (Schmidt and Buban, 1971; Schmidt, 1971, 1972).

It should be noted that the role of phosphate reserve in plants belongs not to PolyP but to phytin (Ca–Mg salt of inositol phosphate), which is formed in large amounts during the ripening of seeds, in parallel with the accumulation of reserve substances such as starch and fats (Sobolev, 1962). Such accumulation and the presence of chlorophyll cause additional difficulties for the identification and study of PolyPs in plants. However, PolyP is also present in plants in the sites where large amounts of phytin are accumulated (Asamov and Valikhanov, 1972; Valikhanov et al., 1980). The amounts of PolyPs normally present in the tissues of higher plants are very small and may be observed at certain stages of development. For example, fairly large amounts of PolyPs accumulate at an early stage of the ripening of cotton seeds (Asamov and Valikhanov, 1972; Valikhanov et al., 1980). At this stage, PolyPs represented more than 10 % of the total phosphorus of the seeds, exceeding the phytin phosphorus by more than twofold (Asamov and Valikhanov, 1972).

8.15 Animals

Although the first evidence for the presence of PolyPs in mammalian cells was obtained long ago (Gabel and Tomas, 1971), the metabolism of this biopolymer in the higher eukaryotes is
Table 8.9 PolyPs in some animal tissues.

<table>
<thead>
<tr>
<th>Tissue</th>
<th>PolyP (mg P (g wet biomass)$^{-1}$)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rat liver, nuclei</td>
<td>100–200</td>
<td>Mansurova et al., 1975a</td>
</tr>
<tr>
<td>Rat liver</td>
<td>1–2</td>
<td>Mansurova et al., 1975a</td>
</tr>
<tr>
<td>Rat liver</td>
<td>3–5</td>
<td>Gabel and Thomas, 1971</td>
</tr>
<tr>
<td>Rat brain</td>
<td>12.8–15.0</td>
<td>Gabel and Thomas, 1971</td>
</tr>
<tr>
<td>Rat brain</td>
<td>10–15</td>
<td>Kulaev and Rozhanets, 1973</td>
</tr>
<tr>
<td>Bovine brain</td>
<td>2.95</td>
<td>Gabel and Thomas, 1971</td>
</tr>
<tr>
<td>Bovine liver</td>
<td>2.24</td>
<td>Gabel and Thomas, 1971</td>
</tr>
<tr>
<td>Bovine pancreas</td>
<td>2.10</td>
<td>Gabel and Thomas, 1971</td>
</tr>
<tr>
<td>Bovine kidney</td>
<td>1.18</td>
<td>Gabel and Thomas, 1971</td>
</tr>
<tr>
<td>Bovine spleen</td>
<td>1.35</td>
<td>Gabel and Thomas, 1971</td>
</tr>
<tr>
<td>Rabbit erythrocytes</td>
<td>0.74</td>
<td>Gabel and Thomas, 1971</td>
</tr>
</tbody>
</table>

Table 8.10 PolyP contents of certain insects (μM P (g body weight)$^{-1}$).

<table>
<thead>
<tr>
<th>Phosphorus compounds</th>
<th>Mulberry moth larva</th>
<th>Mosquito larva</th>
<th>Image of granary weevil</th>
<th>Tropical cockroach intact insects</th>
<th>Tropical cockroach insects without intestines</th>
</tr>
</thead>
<tbody>
<tr>
<td>P\textsubscript{i}</td>
<td>13.30</td>
<td>9.05</td>
<td>13.40</td>
<td>8.40</td>
<td>3.26</td>
</tr>
<tr>
<td>Acid-soluble PolyP</td>
<td>0.04</td>
<td>0.09</td>
<td>0.06</td>
<td>0.45</td>
<td>0.51</td>
</tr>
<tr>
<td>Acid-insoluble PolyP</td>
<td>0.17</td>
<td>0.01</td>
<td>0.005</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>ATP</td>
<td>2.05</td>
<td>2.00</td>
<td>2.46</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

still little studied. One of the reasons for this is the very small amounts of PolyPs in animal cells. The concentrations of PolyPs range from 10 to 100 μM (expressed as P\textsubscript{i}), while the chain lengths may be 100 to 1000 residues (Kornberg, 1999). Table 8.9 shows some earlier data reported on the content of PolyPs in some animal tissues.

PolyPs have been found in insects (Kulaev et al., 1974), and not only in intact insects but also in those with removed intestines (Table 8.10). Hence, its presence in these organisms does not seem related to intestinal microorganisms. It should be noted that the amounts of PolyPs in insects, as in mammals, are less than the amount of ATP.

The precise and sensitive methods of PolyP assay, including enzymatic methods, have served to confirm the presence of PolyPs in a great variety of animal tissues and cell compartments and to obtain interesting data on the dynamics of PolyP formation and utilization in animal cells (Cowling and Birnboim, 1994; Kumble and Kornberg, 1995; Lorenz et al., 1997a,b; Schröder et al., 1999). This polymer was found in different sub-cellular fractions, including nuclei (Penniall and Griffin, 1964; Griffin et al., 1965; Kumble and Kornberg, 1995), microsomes and mitochondria (Kumble and Kornberg, 1995; Kornberg et al., 1999), membranes (Reusch, 1989) and lysosomes (Pisoni and Lindley, 1992). In
Table 8.11 Occurrences of PolyPs in animals (Kumble and Kornberg, 1995; Kornberg, 1999).

<table>
<thead>
<tr>
<th>System</th>
<th>PolyP (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rat liver</td>
<td>26</td>
</tr>
<tr>
<td>Cytosol</td>
<td>12</td>
</tr>
<tr>
<td>Nucleus</td>
<td>89</td>
</tr>
<tr>
<td>Rat brain</td>
<td>54</td>
</tr>
<tr>
<td>Rat heart</td>
<td>58</td>
</tr>
<tr>
<td>Rat kidneys</td>
<td>34</td>
</tr>
<tr>
<td>Rat lungs</td>
<td>26</td>
</tr>
<tr>
<td>Mouse brain</td>
<td>95</td>
</tr>
<tr>
<td>Mouse heart</td>
<td>114</td>
</tr>
</tbody>
</table>

addition, exopolyphosphatase and endopolyphosphatase were found in animal cells (Kumble and Kornberg, 1996; Schröder et al., 1999, 2000).

It is rather difficult to compare the earlier and more recent data on the PolyP contents in animal tissues, because these have been calculated in different ways. However, animal tissues contain less PolyPs than microorganisms. Thus, here we present the data from the work of Kornberg and co-workers in Table 8.11 (Kumble and Kornberg, 1995; Kornberg, 1999) and from the work of Schröder and co-workers in Table 8.12 (Schröder et al., 1999, 2000). The latter table shows the concentrations measured for ‘soluble’ long-chain PolyPs (mainly polymers of 10–50 P_i residues) and ‘insoluble’ long-chain PolyPs (mainly polymers of >50 P_i residues) in different cells and extracellular fluids from animals. The concentrations of soluble long-chain PolyPs were determined to be higher than those of insoluble long-chain PolyPs. PolyPs was also present extracellularly in human blood plasma and serum. However, the concentrations of insoluble long-chain PolyPs in cell-free blood fractions is much lower those in human peripheral blood mononuclear cells (PBMCs) and erythrocytes. It is not yet known whether the plasma PolyPs are synthesized within this body fluid or appear as a result of the lysis of erythrocytes, as suggested by its smaller size. The highest amounts of PolyPs in humans were found in bone-forming osteoblasts (see Table 8.12).

Some interesting data on the changes in PolyP content and chain length were obtained during the development of lower (sponge) and higher (mammals) animals.

Dramatic changes in PolyP metabolism were revealed in the course of gemmule germination in the freshwater sponge *Ephydatia muelleri* (Imsiecke et al., 1996). In the process of germination, a rapid rise in the exopolyphosphatase activity and a strong decrease (by 94 % in 2 d) in the PolyP level were observed (Imsiecke et al., 1996). Since germination does not require exogenic energy sources, it was proposed that PolyP can serve as a phosphate and energy source for this process (Imsiecke et al., 1996; Schröder et al., 1999).

The interrelation of PolyP and RNA synthesis was observed in the course of embryonal development of the frog (Shiokawa and Yamana, 1965) and at early stages of rat liver regeneration (Mansurova et al., 1975a).

The PolyP content and exopolyphosphatase activity in rat tissues changed in the course of ageing and development (Lorenz et al., 1997a). The PolyP level in rat brain increased sixfold
Table 8.12 Concentrations of long-chain PolyPs in human cells and blood plasma (Schröder et al., 2000).

<table>
<thead>
<tr>
<th>Cells or blood fraction</th>
<th>PolyP fraction</th>
<th>PolyP content</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(µM P)</td>
</tr>
<tr>
<td>Osteoblasts^b</td>
<td>Soluble long-chain</td>
<td>394.3 ± 30.6</td>
</tr>
<tr>
<td></td>
<td>Insoluble long chain</td>
<td>133.8 ± 15.2</td>
</tr>
<tr>
<td>Gingival cells</td>
<td>Soluble long-chain</td>
<td>141.3 ± 15.3</td>
</tr>
<tr>
<td></td>
<td>Insoluble long chain</td>
<td>14.9 ± 5.1</td>
</tr>
<tr>
<td>PBMC^c</td>
<td>Soluble long-chain</td>
<td>56.0 ± 2.2</td>
</tr>
<tr>
<td></td>
<td>Insoluble long chain</td>
<td>28.9 ± 7.0</td>
</tr>
<tr>
<td>Erythrocytes</td>
<td>Soluble long-chain</td>
<td>71.2 ± 14.7</td>
</tr>
<tr>
<td></td>
<td>Insoluble long chain</td>
<td>28.1 ± 4.1</td>
</tr>
<tr>
<td>Plasma</td>
<td>Soluble long-chain</td>
<td>48.7 ± 7.0</td>
</tr>
<tr>
<td></td>
<td>Insoluble long-chain</td>
<td>2.5 ± 1.9</td>
</tr>
</tbody>
</table>

^a Extraction of the PolyPs was performed as described by Clark et al. (1986). The amounts of ‘soluble’ long-chain PolyPs (10–50 Pi residues) and of “insoluble” long-chain PolyPs (≥ 50 Pi residues) are shown.

^b Unstimulated osteoblasts.

^c Peripheral blood mononuclear cells.

After birth. Mainly long-chain PolyPs caused this increase. The maximal level of PolyP in brain was found in 12 month old animals. In ‘old’ rat brain, the total PolyP content decreased to about 50%. In rat liver, the age-dependent changes in PolyP content were lower. The highest activities of exopolyphosphatase (Lorenz et al., 1997b) and endopolyphosphatase (Kumble and Kornberg, 1996) were found when the PolyP level was low.

PolyP was shown to display characteristic changes in its chain length during apoptosis in human leukemic HL60 cells (Lorenz et al., 1997b). These cells contained a long-chain PolyP of ~ 150 residues and a short-chain PolyP of 25–45 residues, which could be well distinguished by electrophoresis. In apoptotic cells, the long-chain PolyP disappeared simultaneously with DNA fragmentation. This finding indicates that PolyP may be involved in the processes of apoptosis by affecting the stability of DNA–protein complexes or by regulation of nuclease activity (Schröder et al., 1999).

Schröder and co-workers (Schröder et al., 1999, 2000) studied PolyP metabolism in bone tissues and osteoblast cultures. They revealed that PolyP metabolism in human osteoblasts was modulated by stimulators of osteoblast proliferation and differentiation (Leyhausen et al., 1998). A combined treatment of the cells with dexamethasone, β-glycerophosphate, epidermal growth factor (EGF), and ascorbic acid resulted in a dramatic decrease in PolyP content. This decrease is caused mainly by a decrease in the amount of soluble long-chain PolyPs. The amount of this PolyP fraction, but not the amount of insoluble long-chain PolyPs, further decreases after additional treatment of the cells with 1α, 25-dihydroxyvitamin D3. The decrease in PolyP content during treatment with dexamethasone, β-glycerophosphate, EGF and ascorbic acid is accompanied by a decrease in exopolyphosphatase activity. However, additional treatment with 1α, 25-dihydroxyvitamin D3 results in a significant increase of the enzyme activity. Therefore, it is reasonable to assume that PolyP
Animals 181

may act as an additional regulator of calcification and decalcification in bone tissue, in addition to PP$_i$. The treatment of cultures of human osteosarcoma cell line SaOS-2 with PolyP causes a strong suppression of mineralization induced by β-glycerophosphate (Schröder et al., 2000), thus indicating that this polymer may act as a mineralization inhibitor.

Exopolyphosphatase activity in osteoblasts is much higher than in other mammalian cells and tissues tested. Moreover, endopolyphosphatase activity is present in bone-forming osteoblasts (Schröder et al., 2000). All of these data suggest that, besides PP$_i$, PolyP is involved in the mineralization process in bone tissue.

Thus, the current data available, despite their ‘fragmentariness’, demonstrate the importance of further investigation of PolyP accumulation and utilization in animals, because PolyPs are probably an important additional regulatory factor in higher eukaryotes.
9

APPLIED ASPECTS OF POLYPHOSPHATE BIOCHEMISTRY

9.1 Bioremediation of the Environment

9.1.1 Enhanced Biological Phosphate Removal

The presence of considerable amounts of P_i in wastewaters due to the run-off of fertilizers, and industrial and household discharges, is a major problem, because destructive blue algae blooms may develop in natural waters, where under normal conditions the P_i concentration is most often the limiting factor for algae growth (Godd and Bell, 1985).

It is also important to understand how PolyP$_3$ contained in common detergents is hydrolysed in the environment and what ways may improve its removal. The major factor contributing to PolyP$_3$ degradation in wastewater was shown to be biological by nature, with the most likely mechanism being enzymatic hydrolysis (Halliwell et al., 2001).

The currently available methods for removing P_i from wastewater rely primarily on PolyP accumulation in sludge bacteria, which accumulate considerably more phosphate than is required for normal bacterial growth. This process is called ‘enhanced biological phosphorus removal’ (EBPR) (Toerien et al., 1990). The process of EBPR is now an accepted and low-cost strategy for controlling eutrophication. The excess of taken-up P_i is stored in the form of PolyP granules, and thus PolyPs play the key role in EBPR. In addition, some other extracellular polymers associated with cell clusters may act as a phosphorus reservoir (Cloete and Oosthuizen, 2001).

The literature data on EBPR are now very numerous. There are many detailed reviews, which summarize the data on technology, biochemistry, microbiology and molecular biology of this process (Kortstee et al., 1994; Van Loosdrecht et al., 1997; Mino et al., 1998; Bond and Rees, 1999; Kortstee and Van Veen, 1999; Ohtake et al., 1999; Kortstee et al., ...)
EBPR involves the cycling of microbial biomass and influent wastewater through anaerobic and aerobic zones to achieve selection of microorganisms with high capacities for PolyP accumulation in cells in the aerobic period. In the anaerobic zone of the treatment system, the cells are electron-acceptor deficient and carbon-rich. It has been proposed that PolyP is degraded to P_i, which is excreted from the cell to increase the transmembrane proton gradient. Carbon is then taken up via a proton-symport pump and stored inside the bacterial cell as polyhydroxyalkanoate (PHA). In the subsequent aerobic zone of the treatment system, the environment is electron-acceptor-rich but carbon-deficient. It has therefore been proposed that PHA is degraded and PolyP is synthesized from ATP generated from PHA metabolism. Since more P_i is taken up during the aerobic phase than is secreted during the anaerobic phase, there is a net removal of P_i from the wastewater.

Although the anaerobic–aerobic process for EBPR is an established process from the engineering point of view, it has not been clearly defined in microbiological terms. For example, the phylogenetic or taxonomic groups responsible for EBPR and general structures of the EBPR microbial community have not been described once and for all. Very few pure cultures have been isolated as candidates for playing the key role in EBPR processes. Studies of the metabolic aspects of EBPR have been based mainly on enriched mixed cultures but not on pure cultures. Polyphosphate kinase activity and the occurrence of ppk genes have been directly investigated in activated sludge performing enhanced biological phosphorus removal (Bolesch and Keasling, 2000b).

There are two groups of microorganisms involved in EBPR. These are the PolyP-accumulating organisms and their supposed ‘carbon competitors’, known as glycogen-accumulating organisms. Acinetobacter spp. was first proposed as the bacteria responsible for EBPR (Fuhs and Chen, 1975) and intensive studies of their physiology, genetics and PolyP-metabolizing enzymes were carried out (Deinema et al., 1980, 1985; Van Groenestijn et al., 1989; Bonting et al., 1991, 1993a,b; Van Veen et al., 1994; Geissdörfer et al., 1998). These data are summarized in a number of reviews (Kortstee and Van Veen, 1999; Kortstee et al., 2000). Many strains of Acinetobacter were isolated from activated sludge (Vasiliadis et al., 1990; Kim et al., 1997). However, Acinetobacter could produce only a small proportion of cells in some sludges, where other bacteria prevailed (Auling et al., 1991; Bond et al., 1999).

Nakamura et al. (1995) isolated a new PolyP-accumulating bacterium Microlunatus phosphovorus by a laboratory-scale EBPR process. M. phosphovorus accumulated large amount of PolyPs under aerobic conditions, which was then consumed along with the anaerobic uptake of carbon sources such as glucose. However, it lacks the key metabolic characteristics of EBPR; it neither takes up acetate nor accumulates PHA under anaerobic conditions. Using the 16Sr RNA-targeted probe, M. phosphovorus was found to be about 2.7 % of the total bacteria, while the percentage of PolyP-accumulating bacteria detected by the DAPI stain for PolyP was about 9 % of the total bacteria (Kawaharasaki et al., 1999).

Many authors believe that bacteria phylogenetically related to the Rhodocyclus group are responsible for EBPR in activated sludge communities (Hesselmann et al., 1999; Mino, 2000; Keasling et al., 2000; Jeon et al., 2003). Using fluorescent in situ hybridization techniques, the communities of Rhodocyclus-related organisms in two full-scale wastewater treatment plants were estimated to be between 13 and 18 % of the total bacterial population.
Bioremediation of the environment

Bioremediation of the environment (Zilles et al., 2002). Certain species within the Rhodococcus group should be mainly responsible for EBPR, at least under certain circumstances.

Modern approaches to the identification and quantification of microorganisms in activated sludge include use of the 16S rRNA-targeted oligonucleotide probe (Wagner et al., 1994; Brdjanovic et al., 1999; Kawaharasaki et al., 1999; Onda and Takii, 2000; Liu et al., 2001; Serafim et al., 2002) and quinone profiling (Hiraishi et al., 1998). The results of 16S rDNA clone library and fluorescence in situ hybridization (FISH) with rRNA-targeted, group-specific oligonucleotide probes revealed many new bacterial species in activated sludge. Staining of PolyP and PHA granules confirmed that these bacteria accumulate PHA and PolyP just as predicted by the metabolic models for EBPR. For example, Corynebacteria (Bark et al., 1993), Microthrix parvicella (Erhardt et al., 1997), Tetracoccus cechii (Blackall et al., 1997), Gram-positive cocci belonging to a new genus, Tetrasphaera gen. nov., and two new species of Tetrasphaera japonica, i.e. Tetrasphaera australiensis sp. nov. (Maszenan et al., 2000) and Tetrasphaera elongata sp. nov. (Hanada et al., 2002), Gemmatimonas aurantiaca gen. nov., sp. nov. (Zhang et al., 2003) and Accumulibacter phosphatis (Hesselmann et al., 1999; Liu et al., 2001) were identified in activated sludges. Unexpectedly, one paper reported that the major PolyP-accumulating cells in the studied sludge were clustered spores of yeast (Melasniemi and Hernesmaa, 2000).

DAPI and PHA staining procedures could be combined with FISH to identify directly the PolyP- and PHA-accumulating traits of different phylogenetic groups. For example, Accumulibacter phosphatis (Hesselmann et al., 1999; Liu et al., 2001) and the representatives of a novel gamma-proteobacterial group were observed to accumulate both PolyPs and PHA. The representatives of another novel group, closely related to coccus-shaped Tetrasphaera, and one filamentous group resembling Nostocoidia limicola, were found to accumulate PolyPs but not PHA (Liu et al., 2001). An interesting example of PolyP accumulation was observed in the denitrifying bacterium Paracoccus denitrificans (Barak and Rijn, 2000). PolyP synthesis by this bacterium took place with either oxygen or nitrate as the electron acceptor and in the presence of an external carbon source. It was concluded that P. denitrificans is capable of combined P_i and nitrate removal with no need of alternating anaerobic–aerobic or anaerobic–anoxic switches. The observed diversified functional traits suggested that different substrate metabolisms were used by predominant phylogenetic groups in EBPR processes (Liu et al., 2001).

According to the modern data, EBPR is realized by complicate microbial communities (Bond and Rees, 1999; Mino, 2000; Keasling et al., 2000; Blackall et al., 2002; Hollender et al., 2002; Serafim et al., 2002; Seviour et al., 2003). Some bacteria of these communities are very difficult to isolate and cultivate in pure cultures. The microbial community structure of the EBPR process depends on waste composition, organic substrates and inorganic compounds. High microbial diversity of the EBPR sludge has been demonstrated by new techniques. It was suggested that EBPR sludges consist of several different chemotaxonomic groups. In other words, the EBPR sludge phylogenetically consisted of several different microbial groups, and their metabolic co-operation allows them to grow in special conditions such as wastewater treatment plants.

In EBPR processes, one of the problems is utilization of accumulated phosphate of the sludge. It has been discovered that nearly all PolyPs could be released from activated sludge simply by heating it to 70 °C for about 1 h (Kuroda et al., 2002). The chain lengths of the released PolyPs ranged from 100 to 200 P_i residues. The addition of CaCl_2 precipitated
approximately 75% of the total phosphorus without pH adjustment. The formed precipitate contained more phosphorus and less calcium than typical natural phosphorite deposits. Hence, in combination with EBPR, the present method has a potential for development of a simple process for recovering phosphorus in reusable form from wastewaters (Kuroda et al., 2002).

There are many important problems remaining concerning the PolyP biochemistry of EBPR. First, a clear definition of the microbial community structure of EBPR processes and the mechanisms of ecological selection for such processes is needed. Since many microorganisms from EBPR plants seem to be non-cultivated in pure cultures, molecular methods are surely powerful tools for this purpose. A common EBPR metabolism seems to include phylogenetic diverse microbial populations. This suggests a possibility of the key genes of EBPR metabolism being common among different bacteria. It is important and interesting to determine such key genes and to find out how they are regulated.

9.1.2 Removal of Heavy Metals from Waste

PolyPs have been implicated as strong chelators of divalent cations, including cations of heavy metals. PolyP metabolism plays an important role in the bioremediation of phosphate contamination in municipal wastewaters and may play a key role in heavy metal tolerance and bioremediation (Boswell et al., 1999). Some genetic constructions for enhancing the tolerance of bacteria to heavy metals have been developed (Keasling and Hupf, 1996; Keasling et al., 2000). A plasmid was constructed for mercury bioaccumulation, using the fusion of the well-known mer-operon from Pseudomonas with the ppk gene from Klebsiella aerogenes. The E. coli strain with the plasmid accumulated 10-fold more Hg$^{2+}$ and two-fold more phenylmercury from contaminated medium (Pan-Hou et al., 2002). A large amount of PolyP was identified in the mercury-induced bacterium but not in the cells without mercury induction. It was suggested that PolyP may play a direct role in mercury resistance, probably via chelate formation rather than precipitation of mercury, by releasing P$_i$ from the PolyP (Pan-Hou et al., 2002). A strain of Acinetobacter johnsonii was capable of removing La$^{3+}$ from solution via precipitation of cell-bound LaPO$_4$ (Boswell et al., 2001). The PolyP-mediated accumulation from waste could serve as a useful strategy for the direct remediation of organic and inorganic heavy-metal-containing pollutants.

9.2 Polyphosphates and Polyphosphate-Metabolizing Enzymes in Assay and Synthesis

The cheapness of PolyP, which may be easily obtained by chemical synthesis from P$_i$, is the reason for attempts to employ methods where its high-energy phosphoanhydride bonds can be used in assay and synthesis processes. At the present time, many PolyP-depending enzymes are available in large quantities and with high degrees of purification, and this has facilitated the development of such methods.
Therefore, a method of glucose determination by immobilized polyphosphate glucokinase (EC 2.7.1.63, polyphosphate:glucose phosphotransferase) has been elaborated (Kowalczyk and Szymona, 1991). The enzyme was covalently coupled with collagen-coated silica gel beads and used to determine glucose in serum and other samples, as a packed-bed reactor. The method was based on spectrophotometric measurement of the NADPH produced by two consecutive reactions, similar to the hexokinase method. The immobilized-enzyme reactor showed good operational stability during a month of usage, losing about 12% of its initial activity (Kowalczyk and Szymona, 1991). An endopolyphosphatase assay using the same enzyme has also been described (Kowalczyk and Phillips, 1993).

While PolyP is cheaper than AMP, ADP and ATP, it was proposed as a phosphodonor in enzymatic synthesis. Effective ATP regeneration systems based on polyphosphate kinase (EC 2.7.4.1, ATP:polyphosphate phosphotransferase) have been elaborated (Butler, 1977; Murata et al., 1988; Hoffman et al., 1988; Haesler et al., 1992). For example, polyphosphate kinase partially purified from E. coli and immobilized on glutaraldehyde-activated aminoethyl cellulose could carry out the synthesis of ATP from ADP, using long-chain inorganic PolyP as a phosphoryl donor. Immobilized polyphosphate kinase loses no activity when stored in an aqueous suspension for 2 months at 5°C or for 1–2 weeks at 25°C. It may be stored indefinitely as a lyophilized powder at –10°C. Storage stability, purity and yield of its ATP product and low values of the Michaelis constants for its substrates make it a highly promising enzyme for ATP regeneration (Hoffman et al., 1988).

The overproduction of polyphosphate kinase achieved by recombinant DNA technology makes the practical use of polyphosphate kinase and PolyP more possible. This activity of pure polyphosphate kinase enables the practical synthesis of oligosaccharides and their derivatives (Noguchi and Shiba, 1998; Shiba et al., 2000; Ishige et al., 2001).

For example, galactose 1-phosphate (Gal-1-P) was synthesized with E. coli galactokinase and an ATP-regeneration system consisting of PolyP and polyphosphate kinase prepared from ppk-overproducing E. coli cells (Shiba et al., 2000). The phosphorylation efficiency of galactose with PolyP and polyphosphate kinase was shown to be almost the same as that with ATP. Via a combined action, polyphosphate kinase and adenylate kinase catalysed the formation of ADP from AMP, followed by ATP formation from ADP. The addition of adenylate kinase to an ATP-regeneration system consisting of PolyP and polyphosphate kinase is more promising, because cheap AMP can be substituted for expensive ATP or ADP as an essential compound initially added to the reaction system, and the supplement of adenylate kinase significantly enhances the efficiency of ATP-regeneration, possibly because ADK can efficiently catalyse ADP phosphorylation using another ADP as a phospho-donor yielding ATP and AMP. Eventually, with only 4 mM AMP, 28 mM Gal-1-P was synthesized under the action of polyphosphate kinase and adenylate kinase in the presence of PolyP (Shiba et al., 2000).

Polyphosphate kinase has been found able to phosphorylate nucleoside diphosphates to give nucleoside triphosphates, using PolyP as a phosphate donor. Therefore, the possibility of using PolyP and polyphosphate kinase instead of phosphoenol pyruvate and pyruvate kinase for enzymatic oligosaccharide synthesis was examined, because PolyP is quite cheap when compared with phosphoenol pyruvate (Noguchi and Shiba, 1998; Shiba et al., 2000). Attempts were made to synthesize N-acetyllactosamine (Gal (β1-4) GlcNAc) using the nucleoside diphosphate kinase-like activity of polyphosphate kinase, where UDP-Glc pyrophosphorylase and UDP-Glc 4-epimerase catalyse the synthesis of UDP-Glc from
glucose 1-phosphate and UTP, and the isomerization of UDP-Glc to UDP-Gal, respectively. The galactosyltransferase transfers galactose from UDP-Gal to N-acetylglucosamine, yielding N-acetyllactosamine. The UDP formed through the galactosyl transfer reaction should be regenerated to UTP under the action of PPK in the presence of PolyP. 14 mM N-acetyllactosamine was accumulated after 48 h of reaction, even if only 4 mM UTP was initially added, thus demonstrating that PPK and PolyP efficiently catalyse the regeneration of UTP from UDP. It is obvious that PolyP and PPK can replace PEP and pyruvate kinase in the regeneration of NTPs and are available for enzymatic cyclic synthesis of oligosaccharides (Shiba et al., 2000).

When CMP-N-acetyl neuraminic acid synthetase (EC 2.7.7.43) of Haemophilus influenzae, polypophosphate kinase and CMP kinase were added to the reaction mixture containing equimolar concentrations (15 mM) of CMP and N-acetyl neuraminic acid, and PolyP (150 mM in terms of phosphate), CMP-N-acetyl neuraminic acid was synthesized up to 67 % yield (Ishige et al., 2001).

It can be expected that the potential of PolyP as a phosphodonor in the enzymatic synthesis of biologically active compounds will not be depleted.

9.3 Polyphosphates in Medicine

9.3.1 Antiseptic and Antiviral Agents

PolyPs display antiseptic, cytoprotective and antiviral activities. At a concentration of 0.1 % or higher, PolyP had a bacteriocidal effect on log arithmetic-phase Bacillus cereus cells (Maier et al., 1999). The growth inhibition effect of PolyP was observed with Staphylococcus aureus (Jen and Shelef, 1986; Matsuoka et al., 1995) and Aeromonas hydrophila (Palumbo et al., 1995).

PolyP with a chain length of more than four P_i residues inhibited human immunodeficiency virus type 1 (HIV-1) infection of cells in vitro at concentrations of $\geq 300 \mu$M (in terms of P_i residues), whereas PolyP3 was ineffective (Lorenz et al., 1997b). This long-chain PolyP also inhibited HIV-1-induced syncytium formation. The anti-HIV effect of PolyPs may be due to the binding of the compounds to both the host cell surface and the virus, thereby inhibiting adsorption of the virus (Lorenz et al., 1997b).

9.3.2 Polyphosphate Kinase as a Promising Antimicrobial Target

The ppk1 and ppk2 sequences encoding prokaryotic polyphosphate kinases have a high degree of conservation among diverse bacterial species, including some of pathogens of the major infectious diseases (Tzeng and Kornberg, 1998; Zhang et al., 2002). In view of the essentiality of polyphosphate kinase and PolyP for stationary phase responses and viability in E. coli (Rao and Kornberg, 1996), Vibrio cholerae (Ogawa et al., 2000b), Pseudomonas aeruginosa (Rashid et al., 2000a,b), Helicobacter pylori (Shirai et al., 2000), Shigella and Salmonella (Kim et al., 2002) and Porphyromonas gingivalis (Chen et al., 2002), their
similar roles seem plausible in the expression of virulence factors, which also appear in the stationary phase of some pathogens. In mutants lacking \(ppk\), the phenotype changes related to virulence decrease were established. These are as follows: growth defects at the stationary phase, defective responses to stress and starvation, higher sensitivity to stress factors, including heat, antibiotics, antiserum, UV-light and other effectors, impairment in motility, and biofilm formation (Ogawa et al., 2000b; Rashid and Kornberg, 2000; Rashid et al., 2000a,b; Kim et al., 2002; Chen et al., 2002).

Some evidence for the enhanced virulence of pathogenic strains with increased polyphosphate kinase activity has been obtained. A deletion in the \(ppk\) gene of the \(Helicobacter pylori\) strain Hp141 led to the higher enzymatic activity of polyphosphate kinase, and the variant with such a deletion exhibited a better capacity for colonizing mice. Taking into account that the modified gene is known to be involved in adaptation to a new environment, it was suggested that PPK is an important virulence factor in \(H. pylori\) (Ayraud et al., 2003).

The genes with similarity to bacterial \(ppk1\) and \(ppk2\) were not found in higher eukaryotes (Kornberg et al., 1999; Zhang et al., 2002). Because polyphosphate kinase or/and PolyP were found necessary for virulence, polyphosphate kinase has become an attractive target for antimicrobial drugs (Kornberg, 1999; Kornberg et al., 1999). The absence of any similar enzyme in the higher eukaryotes makes toxicity less likely. Large-scale screening for inhibitors of \(E. coli\) and \(P. aeruginosa\) polyphosphate kinases has given candidates which are unique among the known kinases and active at low concentrations (Kim et al., 2002).

9.3.3 Polyphosphates as New Biomaterials

Calcium PolyP fibre has been synthesized (Griffith, 1992) and new high-performance calcium polyphosphate bioceramics has been proposed as a bone-substitute material (Nelson et al., 1993; Pilliar et al., 2001). The \textit{in vivo} experiments, in which porous rods of calcium PolyP were implanted in the distal femur of rabbits, show that these rods can support bone ingrowth and give no adverse reaction (Grynpas et al., 2002).

A biodegradable PolyP matrix system was developed as a potential delivery vehicle for growth factors. Polyphosphate was synthesized using a triethylamine catalyst in an argon environment and characterized by using elemental analysis, gel permeation chromatography, and Fourier-transform infrared spectroscopy. It was concluded that this system might be an effective carrier for morphogens, growth factors or other classes of bioactive molecules (Renier and Kohn, 1997). Calcium PolyP fibres were used as scaffold materials for tendon tissue engineering \textit{in vitro} (Sun and Zhao, 2002).

9.3.4 Polyphosphates in Bone Therapy and Stomathology

In view of the fact that PolyP is probably involved in the regulation of phosphate metabolism in bone tissues (Schröder et al., 1999; 2000), attempts were made to prove the potential therapeutic uses of PolyPs in the treatment of some bone diseases.

The dissolving action of sodium PolyP₃, cyclic trisodium phosphate and sodium PolyP on synthetic crystals of calcium pyrophosphate dihydrate, and on crystalline aggregates of menisci from patients with chondrocalcinosis, was determined (Cini et al., 2001). The
results of this study indicated that PolyP is effective for dissolving both synthetic and _ex vivo_ crystal aggregates. This suggests possible use of these molecules in the treatment for chondrocalcinosis (Cini et al., 2001).

Based on such PolyP properties as complexing ability, buffer capacity and antiseptic properties, new dentifrices with sodium hexametaphosphate (high-polymeric PolyP) have been elaborated. These dentifrices produced stronger and more lasting effects on surface film chemistry than pyrophosphate or other polymeric-based dentifrice systems (Busscher et al., 2002). The _in vitro_ studies confirmed the anticaries potential and hard tissue safety of a novel sodium hexametaphosphate dentifrice technology, which provides dual-action tooth whitening (i.e. stain prevention, as well as stain removal), while simultaneously providing improved anticalculus action (Pfarrer et al., 2001). The chewing gum, containing 1% of pyrophosphate and 1% of PolyP₃, reduced calculus formation during a clinical study by 37.6%, when compared with ‘no-gum’ treatment (Porciani et al., 2003).

9.4 Polyphosphates in Agriculture

Ammonium polyphosphate is one of the most often used phosphoric fertilizers (Corbridge, 1980). It was found to be equally effective when compared with single superphosphate and diammonium phosphate for increasing the yields of wheat and maize and for increasing the available phosphorus content in soil during field experiments (Sharma and Singh, 1998).

However, the excess of phosphates and PolyPs in soil due to technogenic pollution and the use of fertilizers has a great influence on the transformation of mineral and organic compounds in soil, the composition of soil microbial communities, and finally agriculture productivity (Kudeyarova, 1993).

9.5 Polyphosphates in the Food Industry

In the food industry, PolyPs are used for different purposes, for instance, water holding in the product, emulsion stabilization, etc. Their high buffering capacities, polyanion and sequestering properties, dry improvements, adhesion reduction abilities and antibacterial effects are the main technological properties which make these effective and multifunctional ingredients of food, such as ham, bacon, meat poultry, fish and shellfish. The main function of PolyPs in food is maintenance of the optimal pH level. This helps prolong the product lifetime, and avoids undesirable changes of the product colour and fat decomposition during storage. PolyP and pyrophosphate also help stabilize dispersions, emulsions and suspensions, favouring water-binding capacity and gel formation.

Some allowed food additives, for example, E-451 and E-452, contain the following PolyPs: triphosphates – pentasodium triphosphate and pentapotassium triphosphate; polyphosphates – sodium polyphosphate, potassium polyphosphates and calcium polyphosphate.

There are many commercial phosphate-containing products for meat and fish treatment. For example, Puron CC, a fine granular powder consisting of sodium polyphosphates, is used in amounts of 0.2–0.5 % of the raw products as a component of brine for the manufacture of
smoked products, poultry and fish products. Puromix 80, consisting of sodium di-, tri- and polyphosphates, can be effectively used with both normal raw meat and meat with defects (pale, soft, watery, etc.) (http://tharnika.ru/; http://www.meat.ru).

The improvement of methods of food treatment with PolyPs (Young et al., 1999) and of PolyP assays in food (Cozzani et al., 1996; Sekiguchi et al., 2000) is continuing.

It should be taken into account that the abundance of PolyPs in food may have some unstudied effect on health. For example, if rats were fed with a high-phosphorus diet, they developed nephrocalcinosis. This was more severe in rats fed on PolyP₃ than in those fed on pyrophosphate (Matsuzaki et al., 2001). Thus, the influence of PolyPs in food on human health needs further investigations, especially in view of those diseases associated with phosphate metabolism.

In conclusion, it should be noted that we live in an environment with a permanent phosphorus excess. This factor, resulting from the wide use of phosphate-containing detergents, fertilizers and food additives may have some negative effects on the environment and human health. The biochemistry of PolyPs may offer new ways for overcoming unfavourable factors caused by phosphate contamination of the environment and for controlling infections and some other diseases.
The achievements of contemporary science have enabled biochemical investigations to be extended beyond the biochemistry of contemporary organisms, and it is now possible to pose and to answer many questions concerning evolutionary and comparative biochemistry. The present stage of development of biochemistry and molecular biology is characterized by a steadily increasing interest in a great variety of evolutionary problems. Modern genomics and proteomics offer many new possibilities for understanding the evolution of protein families, biochemical pathways and other functions of living cells. A wealth of experimental material has been provided, from which far-reaching conclusions may be drawn concerning the origin and development of life on Earth. These investigations have been mainly concerned with those aspects of chemical evolution which must have preceded the appearance of life on Earth (Miller, 1953, 1955; 1986; Belozersky, 1959a–c; Griffith et al., 1973; Beck and Orgel, 1965; Lohmann and Orgel, 1968; Ponnampерума et al., 1963; Rabinowitz et al., 1968; Schwartz and Ponnampерума, 1968; Oro et al., 1990). It worth noting that the experimental data so far obtained are a great triumph for the theory of the origin of life on Earth, as previously put forward by A. I. Oparin (Oparin, 1924, 1938, 1957, 1965, 1976).

However, despite the outstanding achievements of evolutionary biochemistry, many problems still await solution. Among these unsolved and relatively little-investigated problems of evolutionary biochemistry, there are the role of phosphorus compounds in chemical evolution, which preceded the appearance of life on Earth, and the evolution of phosphorus metabolism from primitive organisms to contemporary living creatures.
10.1 Abiogenic Synthesis of Polyphosphates and Pyrophosphate

Phosphorus, being one of constituent elements of living cells, must without doubt have played an important role at the earliest stages of emergence and evolution of life. It was considered that even when the Earth possessed a reducing atmosphere, phosphorus was present as phosphate rather than in a reduced form such as phosphite (Miller and Parris, 1964). However, model experiments showed that electrical discharges in water-saturated N₂ containing 1–10 % CH₄ reduce phosphate to phosphite. This mechanism was suggested as a possible source of water-soluble phosphorus-containing compounds in volcanic environments on the prebiotic Earth. By introducing small amounts of H₂ and CO into gas mixtures, in which CO₂ and N₂ are the main components, surprisingly high conversions to phosphite were obtained and several percent reduction of apatite occurred (De Graaf and Schwartz, 2000). Phosphites are known to be highly unstable compounds (Miller and Parris, 1964; Schwartz, 1971), but their occurrence from insoluble apatite might provide a possibility for engaging the insoluble forms of phosphate in different chemical, and later biochemical, processes. It appears that, even at the very earliest stages of life on Earth, phosphorus was taken up by primitive living organisms from the environment in the form of phosphate or its derivatives.

Condensed inorganic phosphates could arise on the primitive Earth through a wide variety of abiogenic processes. They could be formed by condensation of inorganic phosphates at high temperatures (Schramm et al., 1962, 1967), in the reaction between calcium phosphate and cyanide (Miller and Parris, 1964), and under the action of heat on mixtures of ammonium phosphate and urea (Ostenberg and Orgel, 1972). They could therefore easily be present at the time when life first appeared on the Earth. It was shown both in the experiments that simulate magmatic conditions and in the analysis of volatile condensates in volcanic gas, that volcanic activity can produce water-soluble PolyPs (Yamagata et al., 1991). Some authors, however, doubt that PolyP synthesis by heating phosphate minerals under geological conditions on the primitive Earth may be an effective process, but they do not exclude an undiscovered robust prebiotic synthesis of PolyP or mechanisms for concentrating it (Keefe and Miller, 1996). PolyP production as a result of heating the mineral apatite in the presence of other minerals has been reported (De Graaf and Schwartz, 2000).

On the other hand, pyrophosphate (the lowest member of this homologous series of compounds) could also be formed on the primitive Earth. It could arise from orthophosphate, either by inorganic redox reactions or following preliminary activation of the phosphate by cyanogen, cyanate or dicyandiamide. Miller and Parris (1964), Degani and Halmann (1971) and Steinman et al. (1964) have demonstrated this in model experiments. These activating agents could apparently have existed on the primeval Earth. Furthermore, from the work of Orgel and co-workers (Beck and Orgel, 1965; Lohmann and Orgel, 1968), the Miller–Parris reaction (i.e. the conversion of hydroxyapatite into calcium pyrophosphate in the presence of cyanates) can take place under aqueous conditions.

The pyrophosphate formed in this or other ways could be, according to Lipmann (Lipmann, 1965, 1971), ‘the simplest compound present on the primeval Earth to be involved in the accumulation and transfer of energy-rich bonds’. Pyrophosphate is an energy-rich
compound and the hydrolysis of its phosphoric anhydride bond liberated 4.5–5 kCal of energy per mole (Flodgaad and Fleron, 1974).

In model experiments, the conditions were found for non-enzymatic synthesis of pyrophosphate, by the phosphorylation of orthophosphate in the presence of certain cations, and by means of ATP and PolyP₃, respectively (Lowenstein, 1958; Tetas and Lowenstein, 1963; Le Port et al., 1971).

It was shown experimentally that this reaction proceeded much more rapidly with PolyP, as follows (Kulaev and Skryabin, 1971, 1974):

\[
\text{PolyP}_n + [^{32}\text{P}]\text{ orthophosphate} \rightarrow [^{32}\text{P}]\text{ pyrophosphate} + \text{PolyP}_{n-1} \quad (10.1)
\]

It was observed that radioactive pyrophosphate was formed non-enzymatically in substantial amounts when \([^{32}\text{P}]\text{ orthophosphate}\) was phosphorylated by incubation with PolyP₄₀ in an aqueous solution at 37 °C for 15 h at pH 9 in the presence of certain divalent cations. The 16–30 % of initial high-molecular-weight polyphosphate was utilized in phosphorylation, and among the cations tested, the greatest amount of incorporation was achieved with Ba²⁺ (33 %) and the least with Mg²⁺ (16 %):

<table>
<thead>
<tr>
<th>Cation</th>
<th>Mg²⁺</th>
<th>Ca²⁺</th>
<th>Mn²⁺</th>
<th>Cd²⁺</th>
<th>Ba²⁺</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPᵢ/PP (%)</td>
<td>16</td>
<td>22</td>
<td>23</td>
<td>26</td>
<td>33</td>
<td>0</td>
</tr>
</tbody>
</table>

It is interesting that, when organic and inorganic tripolyphosphates were employed under the same conditions, only 0.2–0.6 % of the phosphate donor was utilized (Lowenstein, 1958, 1960; Tetas and Lowenstein, 1963; Le Port et al., 1971). Our experimental findings thus lead to the conclusion that, as the Earth cooled and a hydrosphere was formed on its surface, a variety of transphosphorylation reactions became possible in the primeval ocean, in particular, the phosphorylation of Pᵢ by PolyP to give pyrophosphate. It should be noted that the non-enzymatic synthesis of PolyP and pyrophosphate on the primitive Earth could take place not only in solutions, but also on the surface of some minerals with anion-exchange properties (Arrhenius et al., 1993, 1997).

10.2 Phosphorus Compounds in Chemical Evolution

Phosphate ion is a unique link between living organisms and the inorganic world. In the opinion of some investigators (Arrhenius et al., 1993; De Graaf et al., 1998; Arrhenius et al., 1997), among anionic species oligophosphate ions and charged phosphate esters could have been of great importance in the proposed ‘RNA world’. Phosphorylation is shown to result in selective concentration by surface sorption of compounds, otherwise too dilute to support condensation reactions. It provides protection against rapid hydrolysis of sugars and induces oligomerization of aldehydes by selective concentration. As a manifestation of life arisen, phosphate already appears in the organic context in the oldest preserved sedimentary record (Arrhenius et al., 1997).

Some experiments have shown efficient condensation of simple aldehyde phosphates in the hydroxide mineral (such as hydrotalcite, ([Mg₂Al(OH)₆][nH₂O]) interlayer to form
hexose sugar phosphates, which may be considered as a model for precursor components of RNA (Arhenius et al., 1993; Pitsch et al., 1995; De Graaf et al., 1998). Other minerals, e.g. montmorillonites, catalyse self-condensation of 5′-phosphorimidazolide of nucleosides in pH 8 aqueous electrolyte solutions at ambient temperatures leading to the formation of RNA oligomers (Ferris and Ertem, 1993; Ertem and Ferris, 1997, 1998). These model experiments support the postulate that the origin of the ‘RNA world’ was initiated by RNA oligomers produced by polymerization of activated monomers formed in the course of prebiotic processes (Ferris and Ertem, 1993; Ertem and Ferris, 1997, 1998). It is not improbable that Pi, oligophosphates and PolyP as active anions might have possibilities for modulating the adsorbtion and catalytic properties of the above minerals and thereby affect the synthetic processes at the earliest stages of chemical evolution.

Phosphate minerals might have taken an important place at the earlier stages of chemical evolution and in the model experiments reconstituting the biomolecular stage of evolution on the Earth. For example, non-enzymatic formation of 5′-ADP, starting from phosphorylation of 5′-AMP in the presence of either calcium phosphate or calcium pyrophosphate precipitates, has been reported. This reaction was taken as a model example for the study of heterogeneous catalysis of transphosphorylation in prebiotic conditions (Tessis et al., 1995). Depending on the precipitation times of the samples and medium composition, the structural analysis of these precipitates by electron and X-ray diffraction showed changes in their ‘grade’ of crystallinity. It was proposed that these changes are responsible for modulation of the quantity of adsorbed nucleotides to the surface of solid matrices, as well as the catalytic activity of the precipitates (Tessis et al., 1995).

Many model experiments (Fox and Harada, 1958, 1960; Ponnamperuma et al., 1963; Schramm et al., 1962, 1967; Rabinowitz et al., 1968; Schwartz and Ponnamperuma, 1968; Gabel and Ponnamperuma, 1972; Schoffstall, 1976; Oro, 1983) have shown that high-molecular-weight PolyPs, in contrast to pyrophosphate, could have functioned on the primeval Earth as condensing agents in reactions leading to the formation of nucleosides, nucleotides (including adenosine triphosphate), simple polynucleotides, polypeptides and even primitive protein-like materials. It should be noted that divalent cations, especially Mg2+, were often needed for effective realization of these processes. For example, condensation of glycylglycine to oligoglycine with cyclophosphate in an aqueous solution containing Mg2+ have been observed (Yamagata and Inomata, 1997). Magnesium ion was found to have a remarkable catalytic effect on the phosphorylation of adenosine by cyclophosphate in an aqueous solution under mild conditions at pH 7.0 and 41 °C. The product was primarily 2′,3′-cyclic AMP, together with lesser amounts of ATP (Yamagata et al., 1995).

Some observations proposed that PolyP may be a catalyst in the abiotic synthesis of peptides (Rabinowitz et al., 1969; Rabinowitz and Hampai, 1984; Chetkauskaite et al., 1988).

It was observed that condensation reactions, in which high-molecular-weight PolyPs functioned as activating agents, could be carried out either at high temperatures in non-aqueous media or at room temperature in an aqueous solution. This gives grounds to suppose that these reactions could be involved in the synthesis of macromolecules, which were subsequently incorporated into living cells, both before and after the appearance of the hydrosphere on Earth (Kulaev, 1971, 1973).

Prebiological energy conversion at the prenucleotide level was suggested to involve a ‘thioester world’ (De Duve, 1987), an ‘iron–sulfur world’, in which pyrite (FeS2) is
Phosphorus compounds in chemical evolution

Phosphorus compounds in chemical evolution 197

mandatory (Walker and Brimblecombe, 1985; Wachtershauser, 1992) and a 'pyrophosphate world' (Baltscheffsky, 1997). Taking into account the ability of PolyPs for transphosphorylation reactions and for the catalysis of some condensation reactions, it may be proposed that these polymers also participated in the earlier stages of chemical evolution. Some investigators have proposed that geothermal PolyP might be used by primitive membrane-anchored kinases for ancient energy-transduction processes (Cavalier-Smith, 2001).

In recent years, interest in the 'RNA-world' (Gilbert, 1986; Dworkin et al., 2003) has increased greatly. This is connected with discoveries of the catalytic properties of RNA and of the ability of RNA for replication without the involvement of any other biopolymers. The conception of this possible stage of evolution is described in detail by Spirin (2001). According to this hypothesis, RNA was synthesized by abiogenic processes and then the ancient RNA world arose, in which self-replicated RNA functioned as pre-genetic material and a catalyst (Spirin, 2001). Taking into account the ability of PolyPs to form complexes with RNA, it may be proposed that in such an ancient world PolyPs could yet participate in the regulation of different RNA activities. Figure 10.1 shows a hypothetical scheme of the origin of life according to the idea of the primarility of RNA in biochemical evolution (Spirin, 2001), in which the possible functions of PolyPs are inserted. It would be enticing to add to this scheme PolyP–polyhydroxybutyrate complexes as the simplest channels. Such

![Diagram](image)

Figure 10.1 Schematic conception of the origin of life according to the idea of primarility of RNA (Spirin, 2001) with addition of the probable role of PolyPs and PolyP–polyhydroxybutyrate (PHB) complexes in the early stages of evolution.
complexes might be present in the coacervates and provide an exchange of micro- and macromolecules between these proto-cells. The investigations of Reusch (Reusch, 1999a; 2000) showed that these channels exist in the membranes of nearly all classes of organisms and probably were ancient membrane channels. Earlier, Gabel (1965, 1971) proposed the involvement of PolyPs in formation of the first cell membranes.

10.3 Polyphosphates and Pyrophosphates: Fossil Biochemical Reactions and the Course of Bioenergetic Evolution

Model experiments, however, have not yet provided any reliable information concerning the functions of high-molecular-weight PolyPs and pyrophosphate in the earliest living creatures, although some conclusions as to the role of these primitive high-energy compounds in the metabolism of protobionis may be drawn from comparative biochemistry. By studying the metabolism of more ancient, comparatively primitive forms of contemporary organisms, there may be discerned, as Lipmann (1971) has said, ‘antediluvian’ metabolic features and fossil biochemical reactions, which have been preserved since ancient times.

Investigations in this field of biochemistry, which could be termed as ‘biochemical palaeontology’, could lead, and have indeed led, to the detection of archaic metabolic features, which in all probability derive from primitive life forms.

Thus, Baltscheffsky and co-workers (Baltscheffsky, 1967a,b; Baltscheffsky et al., 1966) and Keister et al. (Keister and Yike, 1967a,b; Keister and Minton, 1971, 1972) have shown that in the phylogenetically ancient and primitive photosynthesizing bacterium *Rhodospirillum rubrum* photosynthetic phosphorylation results in the production of high-energy phosphate much more in the form of pyrophosphate than in the form of ATP. The synthesis of pyrophosphate can proceed in the chromatophores of this bacterium even when the formation of ATP is totally suppressed. Later, it was shown that pyrophosphate in *Rhodospirillum rubrum* is accumulated only in light (Keister and Minton, 1971, 1972; Kulaev et al., 1974a). The energy stored in the pyrophosphate molecule could be utilized both for reversed electron transport and for the active transport of ions through the chromatophore membranes in this bacterium (Baltscheffsky, 1967a,b; Baltscheffsky et al., 1966).

The light-dependent synthesis of pyrophosphate was also observed in the chloroplasts of higher plants (Rubtsov et al., 1977). The results obtained by Libermann and Skulachev (1970) supposed that the energy of pyrophosphate in chromatophores of *Rhodospirillum rubrum* is utilized via electrochemical proton potential (ΔµH⁺). The gene of proton-pumping PP₃ synthetase from *Rhodospirillum rubrum* was cloned (Baltscheffsky et al., 1998) and appeared to have a homology with plant vacular H⁺PPases (Baltscheffsky et al., 1999). In the vacuolar membranes of plants (Davies et al., 1997) and yeast (Lichko and Okorokov, 1991), H⁺PPases generate ΔµH⁺ by using the energy of the PP₃ phosphoanhydride bond. The vacuolar membranes of some archae and protozoa also possess such H⁺PPase (Drozdowicz et al., 1999; Docampo and Moreno, 2001).

Mansurova and co-workers (Mansurova et al., 1973a,b, 1975b, 1976; Mansurova, 1989) have shown that the same process occurs in animal and yeast mitochondria. Pyrophosphate is synthesized in rat liver mitochondria together with ATP (Figure 10.2). However, in rat liver
mitochondria, pyrophosphate was synthesized at about one tenth the rate of the synthesis of ATP and ADP (AMP was present in the incubation medium). The inhibitors of the respiratory chain, rotenone (2 µg per mg of protein), antimycin (1 µg per mg of protein), and cyanide (1 mM), together with the uncoupler 2,4-DNP (0.4 mM), completely suppressed the biosynthesis of pyrophosphate in rat liver mitochondria. This was shown both in intact mitochondria and in fragments of the internal mitochondrial membrane. It is possible that pyrophosphate is formed in the mitochondria as a secondary product, by the cleavage of some part of ATP to AMP and pyrophosphate. However, experiments on the effect of oligomycin (2 µg per mg of protein), which inhibits the formation of ATP in mitochondria, showed that under these conditions the production of pyrophosphate increased substantially. These findings suggest that pyrophosphate is synthesized in animal mitochondria during the functioning of the respiratory chain independent of ATP, and to a certain extent in opposition to it. Similar results were obtained with yeast mitochondria (Mansurova et al., 1975b).

The lack of dependence of pyrophosphate synthesis in animal and yeast mitochondria on ATP was even more established in experiments with mitochondria, which had been depleted in ADP and ATP by pre-incubation with glucose (40 mM), hexokinase (0.1 mg ml⁻¹) and oligomycin (1 µg per mg of protein). In these experiments, the synthesis of pyrophosphate in yeast mitochondria proceeds in the total absence of ADP and ATP (Figure 10.3). The addition of P₁ enhanced the above synthesis. Much more pyrophosphate than ATP is synthesized in the chromatophores of Rh. rubrum, whereas substantially more ATP is formed in animal mitochondria. In addition, the quantity of pyrophosphate synthesized in yeast mitochondria may approximate to their ATP content under certain conditions of incubation.

Comparative biochemistry thus suggests that, since ancient times, and perhaps since the appearance of the earliest organisms, pyrophosphate has been involved in energetic...
Figure 10.3 Synthesis of pyrophosphate by yeast mitochondria depleted in ADP and ATP (Mansurova et al., 1975b).

processes taking place in the membranes, and above all in photosynthetic phosphorylation and phosphorylation in the respiratory chain.

In the opinion of some investigators, the PP-dependent H⁺-pumps are more ancient than the H⁺-ATPases (Baltscheffsky, 1997; Baltscheffsky et al., 1999). However, it should be noted that all contemporary microorganisms, including the most ancient archae, possess in their membranes H⁺-ATPases of different types (Nelson, 1992).

It cannot be excluded therefore that the ATP- and pyrophosphate-based energetics were developed in the course of evolution in parallel and their joint existence in some organisms is one of the ways for the best adaptation to the changing environment. In some cases, the pyrophosphate-dependent enzymes might arise from ATP-dependent ones as a later adaptation. For example, the single mutation in the pyrophosphate-dependent phosphofructokinase of Entamoeba histolytica changed the preference of the enzyme from PPᵢ to ATP (Chi and Kemp, 2000). This result suggested the presence of a latent ATP-binding site in this enzyme and it was proposed that the ancestral pyrophosphate-dependent phosphofructokinase was ATP-dependent.

In the opinion of Oparin (1924, 1938), the earliest process to provide energy for the first living organisms on the Earth, even before the appearance of oxygen, was anaerobic
fermentation of hexoses to lactic acid and ethanol. This suggestion was based first of all on a very reasonable assumption that when life originated on Earth the atmosphere did not contain oxygen but possessed reducing properties, and that a variety of organic substances were present in abundance on the Earth’s surface. Secondly, all retained and most essential energy-providing mechanisms encountered in living organisms today (the cleavage of hexoses during respiration and the pentose phosphate and photosynthetic cycles) involve anaerobic fermentation reactions. From these considerations, it may be deduced with a reasonable degree of certainty that in primitive living organisms the principal, and perhaps the only, energy-providing process was anaerobic fermentation of hexoses, which seemed to be already present in the ‘primeval soup’.

On the basis of results (Uryson and Kulaev, 1968; 1970; Kulaev et al., 1971; Szymona et al., 1962), Kulaev (1971) has suggested that the energy-providing processes involved in glycolysis were mediated in the earliest organisms by high-molecular-weight PolyPs rather than by ATP and pyrophosphate.

In certain contemporary organisms, for instance, bacteria and fungi, 3-phospho-D-glyceroyl-phosphate:polyphosphate phosphotransferase activity was found (Kulaev and Bobyk, 1971; Kulaev et al., 1971). The phosphate was transferred from 1,3-diphosphoglyceric acid, not to ADP to form ATP, as one could expect from the Meyerhof–Embden–Parnas scheme, but directly to PolyP. This fossil reaction was most expressed in an adenine deficient yeast mutant under cell adaptation to ATP depletion.

The second ‘fossil’ reaction is phosphorylation of glucose, not by ATP but by PolyP. The polyphosphate hexokinase activity was detected only in the phylogenetically ancient organisms, which are closely related to each other (Table 10.1). It can be seen from the latter that in the more ancient representatives of this group of microorganisms such as the Micrococci, Tetracocci, Mycococci, and the propionic bacteria, polyphosphate hexokinase activity exceeded that of ATP hexokinase, whereas in phylogenetically younger representatives ATP hexokinase activity was substantially higher than that of polyphosphate hexokinase.

As was shown by Phillips and co-workers (Phillips et al., 1993, 1999), PolyP and ATP glucokinase activities are catalysed by a single enzyme. The data obtained by the investigation of kinetic parameters of purified enzyme from some bacteria suggest a hypothesis of gradual transition from PolyP to ATP as a phosphoryl donor in the course of evolution. According to 16s RNA sequence analysis (Stackelbrandt and Woese, 1981), Propionibacteria are phylogenetically older than Mycobacteria. The purified enzymes of Propionibacterium shermanii, Mycobacterium tuberculosis and Propionibacterium arabinosum differ in their preference for PolyP. When the substrate specificity constant \(k_{cat}/K_m \) ratios, for the utilization of PolyP and ATP were compared, it was found that the ratios decreased progressively with the enzymes from older to younger organisms (Phillips et al., 1999). These results show that utilization of PolyP as a donor of active phosphate in the phosphorylation of glucose is apparently more ancient from the evolutionary point of view than utilization of ATP.

The above experimental findings support the view of Belozersky (1958) who suggested that the high-molecular-weight PolyPs in the earliest organisms functioned in the same way as ATP in the contemporary organisms. Lipmann (1965) and Oparin (1965) also confirmed this suggestion. They indicate that the high-molecular-weight PolyPs may be primarily involved in protobionts in the coupling of glycolysis with the phosphorylation of sugars, for
Table 10.1 Activity of polyphosphate glucokinase and ATP glucokinase in different bacteria. Results are given in mE per mg of protein (Uryson and Kulaev, 1968; Uryson et al., 1973; Szymona et al., 1962; Szymona et al., 1967).

<table>
<thead>
<tr>
<th>Organism</th>
<th>PolyP glucokinase</th>
<th>ATP glucokinase</th>
<th>PolyP glucokinase/ATP glucokinase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micrococcus lysodeikticus</td>
<td>34</td>
<td>7</td>
<td>4.9</td>
</tr>
<tr>
<td>Micrococcus citreus</td>
<td>43</td>
<td>15</td>
<td>2.9</td>
</tr>
<tr>
<td>Micrococcus aurantiacus</td>
<td>23</td>
<td>9</td>
<td>2.6</td>
</tr>
<tr>
<td>Micrococcus sulfureus</td>
<td>12</td>
<td>4</td>
<td>3.0</td>
</tr>
<tr>
<td>Micrococcus sp. strain 11 5N</td>
<td>97</td>
<td>23</td>
<td>4.2</td>
</tr>
<tr>
<td></td>
<td>133N</td>
<td>45</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>220N</td>
<td>39</td>
<td>3.2</td>
</tr>
<tr>
<td>Mycococcus sp. strain 36F</td>
<td>125</td>
<td>54</td>
<td>2.3</td>
</tr>
<tr>
<td></td>
<td>61N</td>
<td>14</td>
<td>1.8</td>
</tr>
<tr>
<td></td>
<td>196N</td>
<td>94</td>
<td>1.9</td>
</tr>
<tr>
<td></td>
<td>357N</td>
<td>97</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>12N</td>
<td>125</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td>114N</td>
<td>66</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>338N</td>
<td>54</td>
<td>2.9</td>
</tr>
<tr>
<td>Sarcina lutea</td>
<td>34</td>
<td>8</td>
<td>4.2</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>0</td>
<td>63</td>
<td>—</td>
</tr>
<tr>
<td>Streptococcus faecalis</td>
<td>0</td>
<td>97</td>
<td>—</td>
</tr>
<tr>
<td>Propionibacterium shermanii</td>
<td>100</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Propionibacterium friedenreichii</td>
<td>37</td>
<td>Trace</td>
<td>1</td>
</tr>
<tr>
<td>Lactobacterium lindneri</td>
<td>0</td>
<td>110</td>
<td>—</td>
</tr>
<tr>
<td>Lactobacterium cereale</td>
<td>0</td>
<td>157</td>
<td>—</td>
</tr>
<tr>
<td>Mycobacterium tuberculosis</td>
<td>87</td>
<td>10</td>
<td>8.7</td>
</tr>
<tr>
<td>Mycobacterium scotochromogenus</td>
<td>237</td>
<td>118</td>
<td>2</td>
</tr>
<tr>
<td>Mycobacterium phlei</td>
<td>169</td>
<td>130</td>
<td>1.3</td>
</tr>
<tr>
<td>Mycobacterium smegmatis</td>
<td>263</td>
<td>233</td>
<td>1.2</td>
</tr>
<tr>
<td>Mycobacterium friburgensis</td>
<td>177</td>
<td>155</td>
<td>1.1</td>
</tr>
<tr>
<td>Arthrobacterium (Mycobacterium)</td>
<td>173</td>
<td>97</td>
<td>1.8</td>
</tr>
<tr>
<td>citreus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthrobacterium (Mycobacterium)</td>
<td>23</td>
<td>11</td>
<td>2.1</td>
</tr>
<tr>
<td>globiformis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corynebacterium xerosis</td>
<td>198</td>
<td>62</td>
<td>2.0</td>
</tr>
<tr>
<td>Proactinomyces ruber strain 45 I</td>
<td>247</td>
<td>26</td>
<td>9.5</td>
</tr>
<tr>
<td>Nocardia (Proactinomyces) madurea</td>
<td>150</td>
<td>22</td>
<td>7.0</td>
</tr>
<tr>
<td>Nocardia (Proactinomyces) turbatus</td>
<td>43</td>
<td>15</td>
<td>2.9</td>
</tr>
<tr>
<td>Micropolyspora viridis</td>
<td>233</td>
<td>107</td>
<td>2.2</td>
</tr>
<tr>
<td>Micropolyspora mesophyllica</td>
<td>92</td>
<td>51</td>
<td>1.8</td>
</tr>
<tr>
<td>Nocardia (Proactinomyces) gardneri</td>
<td>67</td>
<td>57</td>
<td>1.2</td>
</tr>
<tr>
<td>Nocardia (Proactinomyces) minima</td>
<td>172</td>
<td>158</td>
<td>1.1</td>
</tr>
<tr>
<td>Nocardia (Proactinomyces) brasiliensis</td>
<td>83</td>
<td>110</td>
<td>0.8</td>
</tr>
<tr>
<td>Nocardia (Proactinomyces) asteroides</td>
<td>78</td>
<td>187</td>
<td>0.4</td>
</tr>
<tr>
<td>Proactinomyces ruber strain 408</td>
<td>30</td>
<td>273</td>
<td>0.1</td>
</tr>
</tbody>
</table>
instance, in a sequence of reactions such as those shown in Figure 10.4. High-molecular-weight polyphosphates are able to phosphorylate glucose to glucose-6-phosphate, which is converted into 1,3-diphosphoglyceric acid. The latter may give rise to the synthesis of PolyP.

Thus, at the earliest stages of evolution of the energy systems in living organisms, the function of linking exoenergetic and endoenergetic processes, which is normally accomplished in contemporary organisms by ATP, could apparently be carried out to some extent by the more primitively structured high-energy compounds, inorganic PolyPs.

Discussing the role of PolyP in bioenergetics, it should be taken into account that the synthesis of PolyP may be related to $\Delta \mu H^+$. The possibility of PolyP synthesis from PPi was demonstrated in chromatophores of *Rh. rubrum* (Oh and Lee, 1987). In addition, the accumulation of PolyP in yeast is inhibited by ionophores, which destroy the $\Delta \mu H^+$ on different cellular membranes (Beauvoit et al., 1991; Trilisenko et al., 2003).

To summarize, the participation of PolyP in energy-liberating and energy-requiring processes in living cells, including the most ancient pathways, is shown in Figure 10.4. The interaction of PolyP and $\Delta \mu H^+$ was probably developed later than the processes, in which PolyP participated directly in glycolysis. These reactions have been preserved to the utmost in the evolutionary older microorganisms, whereas the $\Delta \mu H^+$-dependent accumulation of PolyP is most supported in lower eukaryotes.

The experimental data so far obtained, especially those derived from our own work, make it possible even now to envisage a role for high-molecular-weight PolyPs in chemical...
and biochemical evolution (Figure 10.5). When the Earth was still very hot, phosphate occurred largely in the form of PolyP. As the temperature fell and a hydrosphere was formed, the polyphosphates were able to participate in abiogenic transphosphorylation reactions, with the formation of pyrophosphate. At any moment, ATP could have been formed in the primeval ocean. During the development of the earliest organisms, the functions, which were initially largely carried out by pyrophosphate, for example, participation in redox reactions taking place in membranes, and by high-molecular-weight PolyPs in reactions occurring in solution, were gradually transferred to ATP. In the metabolism of contemporary organisms, however, neither pyrophosphate nor PolyPs has been totally superseded. Alongside ATP, they are biopolymers with many functions, especially gene-activity control, energy reserve, participation in membrane transport, phosphate reservation, cation chelation and enzyme-activity regulation.

10.4 Changes in the Role of Polyphosphates in Organisms at Different Evolutionary Stages

Quite a number of facts mentioned above support the idea that PolyPs are of very ancient evolutionary origin. Taking into account the hypothesis of the primarility of RNA in the origin of life, the regulatory and energetic functions of PolyPs may be primary in evolution (Figures 10.1 and 10.5). It is probable that this function of PolyPs, when life first appeared
on the Earth, was their main, although by no means, their only function. In general, it is assumed that the polyfunctionality of compounds was an important criterion in their selection as components of living cells.

It is possible, for instance, that in protobionts PolyP was not merely a coupling compound, but also provided a comparatively long-term depot for phosphorus and energy, which enabled organisms to become independent of their environment to some extent. PolyP was able to detoxify free orthophosphoric acid and its salts, which could accumulate in large amounts in cells. Being an excellent ion exchanger, PolyP could also be a regulator of cation metabolism in the earliest organisms, since it could regulate the functions of many enzymes through binding one cation and liberating another. At some stage of evolution, however, the high-molecular-weight PolyPs ceased to fully satisfy the requirements of an organism. More specific compounds were needed, which would have had structures capable of an even greater variety of functions, as well as more precise and specific interactions with other cell components.

In general, it is very likely that the ability to interact with other cell components has also been an important factor in the evolution of metabolism of living organisms. Thus, PolyP, which possesses a monotonic macromolecular, essentially linear, structure without any special features, could have become a somewhat unsatisfactory compound at a certain stage of cell development. The limited capacity of PolyP for precise and very specific interactions with other cellular metabolites resulted in an inconsistency with its function of coupling exo- and endoenergetic processes. Hence, ATP was selected for the above functions, because it has a much more specific, and therefore more readily recognized, structure. Moreover, ATP was capable of many other functions, which could not be performed by PolyP.

Numerous investigations (Ponnamperuma et al., 1963; Rabinowitz et al., 1968; West and Ponnamperuma, 1970; Oro, 1983) have demonstrated a relative easiness of formation of
adenine as compared with other nitrogenous bases, under conditions similar to those which probably occurred in the pre-biological stage of the Earth’s development. It was also shown that adenine is much more resistant to various types of radiation, which undoubtedly played an important part in the processes taking place on the primeval Earth. A series of brilliant investigations carried out by Ponnamperuma and co-workers (Ponnamperuma et al., 1963; Rabinowitz et al., 1968; Schwartz and Ponnamperuma, 1968) demonstrated that adenosine and adenosine polyphosphates could have been formed under conditions similar to those which existed on the Earth at the time when life first appeared. It is very important to note that in these investigations the abiogenic formation of ATP took place only in the presence of ethyl polyphosphates or labile inorganic PolyPs. This makes even more plausible the hypothesis that inorganic PolyPs, rather than ATP, were the first to appear and to function as acceptors and donors of phosphate in primitive organisms.

At the following stages of evolution, three domains of extant life (Bacteria, Archaea, Eucarya) have emerged from a multiphenotypical population of primarily chemolithoautotrophic pre-cells by cellularization and further evolution (Woese et al., 1990; Kandler, 1993). In modern prokaryotes, in addition to the functions of energy and phosphate reserve, the function of gene-activity control has become very significant. This function might arise already in the RNA world, because of the great ability of PolyPs to form complexes with RNA via divalent cations. It is not improbable that such complexes affected the catalytic and replication properties of RNA molecules at this early stage of evolution.

The contemporary organisms with a low degree of organization are still heavily dependent on the environment, and for this reason they need to possess a mechanism for conserving large amounts of active phosphate. One such mechanism for the storage of active phosphate in contemporary microorganisms, both prokaryotes and eukaryotes, remains the accumulation of PolyPs, which renders them independent of the changes in their external environment to a substantial extent. Furthermore, an important factor leading to the retention in contemporary organisms of the ability to accumulate high-molecular-weight PolyPs appears to be the lack of balance of their metabolism. The accumulation of PolyPs in these organisms appears to be an efficient means of detoxifying free P$_i$ and storing it in an active form as PolyPs, so that they can be utilized for rapid growth once favourable conditions for their development appear. In this case, the phosphorus and energy contained in the PolyPs must greatly facilitate the rapid and simultaneous synthesis of large amounts of the nucleic acids required at an early stage of rapid growth and cell division. If a microorganism cannot accumulate PolyPs, the excess of P$_i$ in the medium becomes an unfavourable factor. For example, the halophilic archae Halobacterium salinarium has no ability to synthesize PolyPs in great amounts (Smirnov et al., 2002a,b). Thus, it accumulates P$_i$ in the form of magnesium phosphate under P$_i$ excess in the medium. This leads to certain changes in cell morphology and death of some part of the population.

The cells of the higher, multicellular organisms are to a lesser extent dependent on the environment, and as a result the ability to accumulate large amounts of inorganic polyphosphates could have been lost during the evolutionary process. In certain highly specialized organs in animals, in particular, the muscles, the requirement for a long-term depot of activated phosphate again arose in the course of evolution because of the rhythmic nature of muscular contraction. In this case, still more specialized forms of phosphorus and energy storage appeared, namely, arginine phosphate and creatine phosphate. However, the active phosphate stored in these phosphagens is both accumulated and utilized in muscle tissue.
Changes in the role of polyphosphates

only via ATP. In this respect, the phosphagens differ essentially from inorganic PolyPs, which can also be utilized and synthesized, as we have seen, by other routes.

It is therefore reasonable to suppose that the phosphagens, as distinct from inorganic PolyPs, arose in the course of evolution subsequent to ATP. The function of detoxification of orthophosphate has in most cases, however, evidently ceased to be necessary as a result of evolutionary development in the higher organisms of a very delicately balanced metabolism and of mechanisms for its precise control. In many cases, the need of elimination of P\textsubscript{i} surplus in a form, which is non-toxic to the cell, has again appeared in certain tissues of the higher organisms.

Such a case is apparently the accumulation in the seeds of some plants of significant amounts of phytin, calcium and magnesium salts of inositol hexaphosphoric acid. A number of investigators, in particular, Sobolev (1962), have in fact observed that phytin is formed in large amounts during the ripening of the seeds of higher plants, in parallel with the accumulation of reserve substances such as starch and fats. The accumulation of phytin under these conditions, in the light of our hypothesis, can be regarded as a means of detoxifying orthophosphate, which is liberated during the synthesis of starch and fats and cannot be removed from the ripening seeds by any other means. This method of P\textsubscript{i} detoxification, i.e. deposition as phytin, may be regarded as much more advanced from the evolutionary point of view. This follows from the work carried out by Kulaev and co-workers (Kulaev et al., 1964c) on the metabolism of phosphorus during germination of cotton seeds. It was shown, in particular, that one of the products of phytin cleavage during germination was 3-phosphoglyceric acid. From the evolutionary point of view, this is obviously a greatly improved process, as a result of which large amounts of 3-phosphoglyceric acid accumulate during seed germination. This compound is known to occupy the central position in the Calvin photosynthetic cycle and other energetic and plastic processes in the higher plants. However, high-molecular-weight PolyPs are also present at the sites where large amounts of phytin accumulate in the higher plants (e.g. the seeds) (Asamov and Valikhanov, 1972), which is highly significant. For example, high-molecular-weight polyphosphates occur in the brains of mammals, i.e. at a site where usually a typical phosphagen, creatine phosphate, is found as well.

In the course of evolution from prokaryotes to eukaryotes, the energetic role of PolyP decreased. However, other functions came to the fore, such as phosphate storage, cation chelation, regulation of enzyme activities, gene expression and membrane transport (Figure 10.6). The significance of the regulatory functions of PolyP increased in eukaryotes.

![Figure 10.6](image)

Figure 10.6 Changes in the functions of PolyPs during evolution.
These functions are predominant in animal cells, where PolyP participates mainly in the transport across the membranes and in the regulation of gene expression.

Therefore, future comparative investigations of PolyP metabolism in archae, bacteria and eukaryotes will provide better understanding of the evolution of the functions of PolyPs. In microbial cells, inorganic PolyP plays a significant role increasing cell resistance to unfavourable environmental conditions and regulating different biochemical processes; whereas in animal cells, which possess a hymoral and neurorous regulatory mechanisms, the PolyP functions become narrow but do not disappear. The ability to synthesize high-molecular-weight PolyPs is apparently of great importance even in the higher animals and plants, since their cells are thereby rendered less dependent on external factors.

The PolyP metabolism in eukaryotic cells has specific peculiarities in each cellular compartment. For example, a large amount of evidence has been obtained for yeast, suggesting that the synthesis and degradation of PolyP in each specialized organelle and compartment of the cells is mediated by different sets of enzymes. This is consistent with the endosymbiotic hypothesis of eukaryotic cell origin.

According to this hypothesis (Margulis, 1993), the eukaryotic cell is a result of symbiosis of different prokaryotic cells, where mitochondria originated from eubacteria, and chloroplasts – from cyanobacteria, and vacuoles – from archae.

The main argument in favour of this hypothesis is the presence in chloroplasts and mitochondria of DNA, which is different from the nuclear DNA and similar to the DNA of prokaryotes, as well as the similarity of chloroplast, mitochondrial and bacterial ribosomes and their significant difference from cytoplasmic ribosomes of eukaryotic cells. The chloroplasts and mitochondria were found to be close to bacterial cells in additional other biochemical features: the presence in their membranes of phospholipid cardiolipin, which is absent in the plasma membrane of eukaryotes, and ATPases of one and the same type F1F0.

The homology of V-ATPases and pyrophosphatases of the vacuoles and plasma membranes of archae indicates a possibility of endosymbiotic descent of vacuoles from ancient representatives of this domain (Nelson, 1992).

PolyP metabolism in mitochondria and chloroplasts has been little studied as yet. The question of retention in these organelles of some peculiarities of PolyP metabolism characteristic of bacterial cells is still open. In particular, computer analysis of the genomes of chloroplasts and mitochondria in some plants and yeast has not revealed any sequences similar to the genes of bacterial polyphosphate kinase ppk1 and exopolyphosphatase ppx (Kulakovsky, unpublished results). These sequences are highly conserved in bacteria (Reizer et al., 1993; Kornberg et al., 1999), and their absence points to a possible loss of the corresponding genes in the course of evolution.

It should be mentioned that the ribosomes of chloroplasts and mitochondria synthesize only a comparatively small part of the proteins required for the formation and function of these organelles. This may be due to the fact that the process of symbiosis occurred in a very distant epoch and many genes have shifted from autonomous genomes into nuclei since that time.

For example, the genes encoding putative guanosine 3’-5’-bispyrophosphate (ppGpp) synthase–degradase, which is a member of the RelA-SpoT family of bacterial proteins, were identified in the nuclear genomes of the unicellular photosynthetic eucaryote *Chlamydomonas reinhardtii* (Kasai et al., 2002) in the halophyte *Suaeda japonica* (Yamada et al.,...
The encoded protein of *Chlamydomonas reinhardtii* (Kasai et al., 2002) possesses a putative chloroplast-targeting signal at its NH$_2$-terminus and can be translocated into chloroplasts. The presence of ppGpp synthase–degradase activities in eukaryotic organisms suggests that the eubacterial stringent control mediated by ppGpp and tightly bound with PolyP has been conserved during the evolution of chloroplasts from photosynthetic bacterial symbiont.

It is not improbable that further investigation of PolyP metabolism in mitochondria and chloroplasts would reveal novel features of similarity with eubacteria in favour of the endosymbiotic theory of the origin of eukaryotes.

In general, investigations of the metabolism of polyphosphates in living organisms at different stages of evolution are of great importance for progress in evolutionary biochemistry.
REFERENCES

polyphosphatase activity of vacuoles of the yeast *Saccharomyces cerevisiae*. Biochemistry (Moscow), **58**, 1053–1061.

References 213

References

References

References 217

E. K. Chernysheva, M. S. Kritsky and I. S. Kulaev (1971). The determination of the degree of

References

E. De Venditis, R. Zahn and O. Fasano (1986). Regeneration of GTP-bound from GDP-bound

References 221

J. P. Ebel (1951). Recherches chimiques et biologiques sur les poly- et metaphosphates. These Doctor Physics, Université Strasbourg, France.

References

References

226 References

J. Hollender, U. Dreyer, L. Kornberg, P. Kampfer and W. Dott (2002). Selective enrichment and

D. L. Keister and N. J. Yike (1967b). Energy-linked reactions in photosynthetic bacteria. II. The energy-dependent reduction of oxidized nicotinamide–adenine dinucleotide phosphate by reduced
References

References

234 References

References

I. S. Kulaev, M. S. Kritsky and A. N. Belozersky (1960a). The metabolism of polyphosphates and other phosphorus compounds during the development of fruiting bodies of the mushroom (in Russian). *Biokhimiya (Moscow)*, 25, 735–748.

References

References

References

References

References

S. Muller-Felter and J. P. Ebel (1962). Separation des acides riboiuicleiques el des polyphosphates
References 245

References

T. Nihei (1955). A phosphorylative process, accompanied by photochemical liberation of oxygen,
occurring at the stage of nuclear division in *Chlorella cells*. I. *J. Biochem. (Tokyo)*, 42, 245–256.

References

References

V. V. Petrov (1990). Increase of the anion and proton permeability of *Saccharomyces carlsbergensis* plasmalemma by n-alcohols as a possible cause of its de-energization. *Yeast*, 6, 311–318.

References

References 251

252 References

References

References

Determination of the role of polyphosphate in transport-coupled phosphorylation in the yeast *Saccharomyces cerevisiae*. Antonie Van Leeuwenhoek, 57, 159–164.

References

References 257

References

References

References

References 263

References

M. Watanabe, K. Kohata and M. Kunugi (1988). Phosphate accumulation and metabolism by

References

References

INDEX OF GENERIC NAMES

Acetabularia crenulata	40, 171, 172
Acetabularia mediterranea	40, 63, 173
Acetobacter suboxydans	38
Achroca grissela	44
Acidithiobacillus ferrooxidans	69
Acinetobacter baumannii	69
Acinetobacter calcoaceticus	69
Acinetobacter johnsonii	76, 77, 92, 94, 135
Acinetobacter sp.	38, 134
Actinomyces	37, 45
Actinomyces (Streptomyces) aureofaciens	38
Actinomyces (Streptomyces) eritreus	38
Actinomyces (Streptomyces) griseus	38
Actinoplanus armeniacus	202
Acumulibacter phosphatis	185
Aerobacter (Klebsiella) aerogenes	38, 66, 135
Aerobacter cloaceae	38
Aeromonas hydrophila	188
Aeropyrum pernix	202
Agaricus bisporus	41, 117, 166, 168
Agrobacterium radiobacter	38
Agrobacterium tumefaciens	54, 55, 69
Amoeba chaos chaos	43
Amoeba sp.	43
Anabaena cylindrica	139
Anabaena variabilis	38
Anabaena flos-aquae	139
Anacystis nidulans	38, 45, 97, 138, 139
Ankistrodesmus braunii	40, 172
Aphanizomenon baltica	69
Aphanizomenon sp.	69
Aquifex aeolicus	69
Archaeoglobus fulgidus	69
Arthrobacter sp.	74, 69
Arthrobacter (Mycobacterium) citreus	202
Arthrobacter (Mycobacterium) globiformis	202
Asparagopsis officinalis	106
Aspergillus nidulans	41
Aspergillus niger	42, 47, 86, 117
Aspergillus oryzae	42
Azotobacter agile	38, 137
Azotobacter vinelandii	39, 102
Bacillus sp.	55
Bacillus anthracis	69
Bacillus brevis	39
Bacillus cereus	39, 106, 188
Bacillus freundreihi	39
Bacillus halodurans	69
Bacillus megatherium	39
Bacillus prodigiosus	39
Bacillus subtilis	74, 102
Badihamia utricularis	42
Banksia ornata	44
Bdellovibrio bacteriovorus	55
Blaberus cranifera	44
Bordeiella pertussis	69
Borrelia burgdorferi	69
Botryotrix cinerea	106
Brethanomyces animalis	42
Brevibacterium ammonigenes	39, 75
Brucella melitensis	69
Buchnera aphidicola	69
Buchnera sp.	69

The Biochemistry of Inorganic Polyphosphates I. S. Kulaev, V. M. Vagabov and T. V. Kulakovskaya
<table>
<thead>
<tr>
<th>Generic Name</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burkholderia cepacia</td>
<td>39, 69</td>
</tr>
<tr>
<td>Burkholderia fungorum</td>
<td>69</td>
</tr>
<tr>
<td>Campylobacter coli</td>
<td>69</td>
</tr>
<tr>
<td>Campylobacter jejuni</td>
<td>69</td>
</tr>
<tr>
<td>Candida guillermondii</td>
<td>42</td>
</tr>
<tr>
<td>Candida humicola</td>
<td>42, 161</td>
</tr>
<tr>
<td>Candida tropicalis</td>
<td>42</td>
</tr>
<tr>
<td>Candida utilis</td>
<td>42, 159</td>
</tr>
<tr>
<td>Candida vulgaris</td>
<td>42</td>
</tr>
<tr>
<td>Caulobacter crescentus</td>
<td>69</td>
</tr>
<tr>
<td>Caulobacter vibrioide</td>
<td>39</td>
</tr>
<tr>
<td>Cellaeria euphorbiae</td>
<td>44</td>
</tr>
<tr>
<td>Ceramium sp.</td>
<td>40</td>
</tr>
<tr>
<td>Chaetonium globosum</td>
<td>42</td>
</tr>
<tr>
<td>Chara sp.</td>
<td>40</td>
</tr>
<tr>
<td>Chilomonas sp.</td>
<td>40</td>
</tr>
<tr>
<td>Chlamydia muridarum</td>
<td>69</td>
</tr>
<tr>
<td>Chromatium okenii</td>
<td>39</td>
</tr>
<tr>
<td>Chromatium sp.</td>
<td>39</td>
</tr>
<tr>
<td>Clostridium acetobutylicum</td>
<td>69</td>
</tr>
<tr>
<td>Clostridium difficile</td>
<td>107</td>
</tr>
<tr>
<td>Clostridium perfringens</td>
<td>69</td>
</tr>
<tr>
<td>Clostridium sp.</td>
<td>39</td>
</tr>
<tr>
<td>Clostridium sporogenes</td>
<td>39</td>
</tr>
<tr>
<td>Colleotrichum sp.</td>
<td>50, 106, 118</td>
</tr>
<tr>
<td>Colleotrichum lindenuthianum</td>
<td>42</td>
</tr>
<tr>
<td>Corynebacterium ammonigenes</td>
<td>75, 142</td>
</tr>
<tr>
<td>Corynebacterium diphtheriae</td>
<td>39</td>
</tr>
<tr>
<td>Corynebacterium glutamicum</td>
<td>69, 142</td>
</tr>
<tr>
<td>Corynebacterium xerosis</td>
<td>39, 142, 202</td>
</tr>
<tr>
<td>Cosmarium sp.</td>
<td>41, 169, 174</td>
</tr>
<tr>
<td>Crithidia fasciculata</td>
<td>44</td>
</tr>
<tr>
<td>Cryptococcus laurentii</td>
<td>42</td>
</tr>
<tr>
<td>Culvularia maculans</td>
<td>42</td>
</tr>
<tr>
<td>Cuninghamella elegans</td>
<td>42</td>
</tr>
<tr>
<td>Cuscuta reflexa</td>
<td>44</td>
</tr>
<tr>
<td>Cylindroperum licheniforme</td>
<td>38</td>
</tr>
<tr>
<td>Cytophaga hutchinsonii</td>
<td>69</td>
</tr>
<tr>
<td>Delephila euphorbiae</td>
<td>44</td>
</tr>
<tr>
<td>Deinococcus radiodurans</td>
<td>69</td>
</tr>
<tr>
<td>Dermatophylos congoensis</td>
<td>203</td>
</tr>
<tr>
<td>Deschampsia flexiosa</td>
<td>44</td>
</tr>
<tr>
<td>Desulfovibrio gigas</td>
<td>26</td>
</tr>
<tr>
<td>Dictyostelium discoideum</td>
<td>69, 166</td>
</tr>
<tr>
<td>Diploida natalensis</td>
<td>42</td>
</tr>
<tr>
<td>Dunaliella salina</td>
<td>41, 115</td>
</tr>
<tr>
<td>Dunaliella viridis</td>
<td>41</td>
</tr>
<tr>
<td>Endomyces magnusii</td>
<td>42, 57, 84, 104</td>
</tr>
<tr>
<td>Entamoeba sp.</td>
<td>44</td>
</tr>
<tr>
<td>Entamoeba histolytica</td>
<td>200</td>
</tr>
<tr>
<td>Enteromorpha sp.</td>
<td>41</td>
</tr>
<tr>
<td>Ephydatia muelleri</td>
<td>44, 119, 179</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>34, 45, 69, 92, 100, 125</td>
</tr>
<tr>
<td>Eucalyptus pilularis</td>
<td>106</td>
</tr>
<tr>
<td>Euglena sp.</td>
<td>173</td>
</tr>
<tr>
<td>Euglena gracilis</td>
<td>41</td>
</tr>
<tr>
<td>Fragillaria sp.</td>
<td>41</td>
</tr>
<tr>
<td>Fusarium coeruleum</td>
<td>42</td>
</tr>
<tr>
<td>Fusidium coccineum</td>
<td>118, 171</td>
</tr>
<tr>
<td>Fusobacterium nucleatum</td>
<td>69</td>
</tr>
<tr>
<td>Galeria mellonella</td>
<td>44</td>
</tr>
<tr>
<td>Gemmatimonas aurantiaca</td>
<td>185</td>
</tr>
<tr>
<td>Geobacter sulfurreducens</td>
<td>69</td>
</tr>
<tr>
<td>Giromitra esculenta</td>
<td>42, 166</td>
</tr>
<tr>
<td>Glamus fasciculatum</td>
<td>106</td>
</tr>
<tr>
<td>Glumus mosseae</td>
<td>106</td>
</tr>
<tr>
<td>Haemophilus influenzae</td>
<td>69, 188</td>
</tr>
<tr>
<td>Halobacterium salinarium</td>
<td>38, 77, 92, 140, 146</td>
</tr>
<tr>
<td>Halobacterium sp.</td>
<td>69</td>
</tr>
<tr>
<td>Halofexus volcani</td>
<td>69</td>
</tr>
<tr>
<td>Halorubum distribution</td>
<td>38, 140, 146</td>
</tr>
<tr>
<td>Helicobacter pylori</td>
<td>39, 55, 69, 115, 188</td>
</tr>
<tr>
<td>Helix pomatia</td>
<td>57</td>
</tr>
<tr>
<td>Heterosigma akashiore</td>
<td>174</td>
</tr>
<tr>
<td>Hydrodiction reticulatum</td>
<td>41</td>
</tr>
<tr>
<td>Hydrogenomonas sp.</td>
<td>39</td>
</tr>
<tr>
<td>Isaria gelina</td>
<td>42</td>
</tr>
<tr>
<td>Klebsiella aerogenes</td>
<td>69, 135</td>
</tr>
<tr>
<td>Klebsiella pneumoniae</td>
<td>104</td>
</tr>
<tr>
<td>Kloekera mulleri</td>
<td>42</td>
</tr>
<tr>
<td>Kluyveromyces marxianus</td>
<td>57, 104, 157</td>
</tr>
<tr>
<td>Generic Name</td>
<td>Page Numbers</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Lactobacillus casei</td>
<td>39</td>
</tr>
<tr>
<td>Lactobacterium cereale</td>
<td>202</td>
</tr>
<tr>
<td>Lactobacterium lindneri</td>
<td>202</td>
</tr>
<tr>
<td>Lactococcus lactis</td>
<td>69</td>
</tr>
<tr>
<td>Leishmania major</td>
<td>44, 83, 86, 175, 176</td>
</tr>
<tr>
<td>Leptobrium sp.</td>
<td>43</td>
</tr>
<tr>
<td>Lethinus tigrinus</td>
<td>42</td>
</tr>
<tr>
<td>Leuconostoc mesenteroides</td>
<td>69</td>
</tr>
<tr>
<td>Lingbyaerogineo amplivaginata</td>
<td>38</td>
</tr>
<tr>
<td>Lingbyaerogineo coerula</td>
<td>38</td>
</tr>
<tr>
<td>Listeria innocua</td>
<td>69</td>
</tr>
<tr>
<td>Listeria monocytogenes</td>
<td>69, 107</td>
</tr>
<tr>
<td>Magnetococcus sp.</td>
<td>69</td>
</tr>
<tr>
<td>Magnetospirillum magnetotacticum</td>
<td>69</td>
</tr>
<tr>
<td>Malus domestica</td>
<td>44</td>
</tr>
<tr>
<td>Mesorhizobium loti</td>
<td>69</td>
</tr>
<tr>
<td>Methanococcus jannaschi</td>
<td>69</td>
</tr>
<tr>
<td>Methanopyrus kandleri</td>
<td>69</td>
</tr>
<tr>
<td>Methanosarcina acetivorans</td>
<td>69</td>
</tr>
<tr>
<td>Methanosarcina mazei</td>
<td>69</td>
</tr>
<tr>
<td>Methanosarcina frisia</td>
<td>38, 146</td>
</tr>
<tr>
<td>Methanothermobacter thermautotrophicus</td>
<td>69</td>
</tr>
<tr>
<td>Methanotrix soehgenii</td>
<td>86</td>
</tr>
<tr>
<td>Microbulbifer degradans</td>
<td>69</td>
</tr>
<tr>
<td>Micrococcus aureantiacus</td>
<td>202</td>
</tr>
<tr>
<td>Micrococcus citreus</td>
<td>202</td>
</tr>
<tr>
<td>Micrococcus denitrificans</td>
<td>39</td>
</tr>
<tr>
<td>Micrococcus flavus</td>
<td>39</td>
</tr>
<tr>
<td>Micrococcus luteus</td>
<td>75</td>
</tr>
<tr>
<td>Micrococcus lysodeikticus</td>
<td>39, 55, 202</td>
</tr>
<tr>
<td>Micrococcus sp.</td>
<td>202</td>
</tr>
<tr>
<td>Micrococcus sulfureus</td>
<td>202</td>
</tr>
<tr>
<td>Microtostromatococcus phosphovorus</td>
<td>73, 74, 77, 92</td>
</tr>
<tr>
<td>Micromonas fusca</td>
<td>203</td>
</tr>
<tr>
<td>Micromonas sp.</td>
<td>202</td>
</tr>
<tr>
<td>Micromonas sp.</td>
<td>202</td>
</tr>
<tr>
<td>Micropolyfusca</td>
<td>202</td>
</tr>
<tr>
<td>Nocardia (Proactinomyces) asteroides</td>
<td>202</td>
</tr>
<tr>
<td>Nocardia (Proactinomyces) brasilienensis</td>
<td>202</td>
</tr>
<tr>
<td>Nocardia (Proactinomyces) gardneri</td>
<td>202</td>
</tr>
<tr>
<td>Nocardia (Proactinomyces) madurea</td>
<td>202</td>
</tr>
<tr>
<td>Nocardia (Proactinomyces) minima</td>
<td>202</td>
</tr>
<tr>
<td>Nocardia (Proactinomyces) paragengensis</td>
<td>203</td>
</tr>
<tr>
<td>Nocardia (Proactinomyces) turbatis</td>
<td>202</td>
</tr>
<tr>
<td>Nodularia spumigena</td>
<td>69</td>
</tr>
<tr>
<td>Nostoc puriforme</td>
<td>38, 54, 69</td>
</tr>
<tr>
<td>Nostoc sp.</td>
<td>69</td>
</tr>
<tr>
<td>Nostocoida limicola</td>
<td>185</td>
</tr>
<tr>
<td>Oedogonium sp.</td>
<td>41</td>
</tr>
<tr>
<td>Oenococcus oeni</td>
<td>69</td>
</tr>
<tr>
<td>Oscillatoria amoena</td>
<td>38</td>
</tr>
<tr>
<td>Oscillatoria limosa</td>
<td>38</td>
</tr>
<tr>
<td>Oscillatoria sp.</td>
<td>38</td>
</tr>
<tr>
<td>Oscillatoria redekei</td>
<td>140</td>
</tr>
<tr>
<td>Paracoccus denitrificans</td>
<td>185</td>
</tr>
<tr>
<td>Pasteurella multocida</td>
<td>69</td>
</tr>
<tr>
<td>Penicillium chrysogenum</td>
<td>43, 118, 117, 167</td>
</tr>
<tr>
<td>Phaeractylum tricornutum</td>
<td>41, 175</td>
</tr>
<tr>
<td>Phialocephala fortinii</td>
<td>106</td>
</tr>
<tr>
<td>Phormidium ambiguum</td>
<td>38</td>
</tr>
<tr>
<td>Phormidium frigidum</td>
<td>38</td>
</tr>
<tr>
<td>Phormidium uncinatum</td>
<td>38</td>
</tr>
<tr>
<td>Physomyces blakesleeanus</td>
<td>43</td>
</tr>
<tr>
<td>Physarum polycephalum</td>
<td>43, 63, 117, 166</td>
</tr>
<tr>
<td>Physarum sp.</td>
<td>43</td>
</tr>
<tr>
<td>Pisolithus tinctorius</td>
<td>25, 43, 106</td>
</tr>
<tr>
<td>Plectonema boryanum</td>
<td>24, 38, 45, 54, 69</td>
</tr>
<tr>
<td>Polytoma ceca</td>
<td>41</td>
</tr>
<tr>
<td>Polytrichum sp.</td>
<td>43</td>
</tr>
<tr>
<td>Porphyromonas gingivalis</td>
<td>69, 112, 188</td>
</tr>
</tbody>
</table>
Proactinomyces pelletieri 203
Proactinomyces ruber 202
Prochlorococcus marinus 69
Propionibacterium sp. 31, 201
Propionibacterium arabinosum 74, 201
Propionibacterium friedenreichii 202
Propionibacterium shermanii 17, 40, 65, 69, 73, 202
Pseudomonas aeruginosa 40, 66, 77, 88, 93, 104, 131, 133
Pseudomonas fluorescens 69
Pyobaculum aerophilum 69
Pyrococcus abyssi 69
Pyrococcus furiosus 69
Pyrococcus horikoshii 69
Ralstonia metallidurans 69
Ralstonia solanacearum 69
Rana japonica 44
Renibacterium salmoninarum 74
Renobacter 55
Rhodobacter sphaeroides 69
Rhodocyclus sp. 92, 184
Rhodocyclus tenuis 66, 69
Rhodopseudomonas palustris 40, 69
Rhodopseudomonas spheroides 40, 140
Rhodospirillum rubrum 40, 69, 139, 198
Rhodotorula rubra 43
Rhopalocystis gleifera 41
Rickettsia conorii 69
Rickettsia prowazekii 69, 115
Saccharomyces carlsbergensis 43, 59, 60, 94, 95, 98
Saccharomyces cerevisiae 43, 63, 69, 76, 93, 148
Saccharomyces fragilis 43
Saccharomyces mellis 43, 57
Salmonella sp. 112
Salmonella dublin 69
Salmonella enterica 104
Salmonella typhi 69
Salmonella typhimurium 69, 109
Sarcina lutea 202
Scenedesmus obliquus 41
Scenedesmus quadricauda 41
Scenedesmus sp. 41
Schizosaccharomyces pombe 43, 69, 148
Serratia marcescens 40, 69
Shigella sp. 112
Shigella flexneri 69
Sinorhizobium meliloti 69
Solana lycopersicum 44
Spinacea oleracea 44
Spiroplum volutans 40
Spirogyra sp. 41
Staphylococcus albus 40
Streptococcus pyogenes 69
Streptococcus sp. 40
Streptomyces antibioticus 109
Streptomyces aureofaciens 38, 109, 110, 203
Streptomyces coelicolor 69, 109
Streptomyces fradiae 203
Streptomyces globisporus 203
Streptomyces griseus 38, 69, 203
Streptomyces lividans 40, 50, 69, 100, 109
Streptomyces olivaceus 203
Stretosporangium roseum 203
Streptomyces somaliensis 203
Stueda japonica 206
Suillus bovinus 25
Sulfolobus acidocaldarius 38, 68
Sulfolobus sulfataricus 38, 69, 77
Sulfolobus tokodaii 69
Synechococcus sp. 69
Synechocystis sp. 69
Tetrahymanema pyriformis 44
Tetrasphaera australiensis 40, 185
Tetrasphaera elongata 40, 185
Tetrasphaera japonica 40, 185
Thermoactinomyces (Micromonospora) vulgaris 203
Thermoaerobacter tengcongensis 69
Thermobacterium thermoautotrophicum 86
Thermobifida fusca 69
Thermoplasma acidophilum 69
Thermoplasma volcanii 69
Thermosynechococcus elongatus 69
Vibrio cholerae 69, 104, 112, 188
Thermotoga maritima 69
Tolypocladium sp. 118
Torula sp. 43
Torula sporarosi 43
Torula utilis 43
Toxoplasma gondii 176
Treponema pallidum 69
Treponema pallidum 115
Triticum vulgare 44
Trypanosoma brucei 44, 176
Trypanosoma cruzi 44, 176
Trypanosoma brucei 44, 176
Tuboidobacter sp. 55
Ulotrix sp. 41
Ulva lactuca 169, 174, 175
Ureaplasma urealyticum 69
Urtica dioica 44
Vaucheria sp. 41
Verticillium honigii 43
Vibrio cholerae 66, 69, 104
Xanthomonas axonopodis 69

Xanthomonas campestris 69
Xerocomus badius 25
Xylella fastidiosa 69

Yersinia pestis 69
Zygnema sp. 41
Zygorhyncus exponens 43
<table>
<thead>
<tr>
<th>SUBJECT INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>acidocalcisome 46, 61, 94</td>
</tr>
<tr>
<td>apoptosis 180</td>
</tr>
<tr>
<td>activated sludge 17, 22, 24, 31, 53</td>
</tr>
<tr>
<td>adenosine tetraphosphate phosphohydrolase 85</td>
</tr>
<tr>
<td>agriculture 190</td>
</tr>
<tr>
<td>alkaline phosphatase 85</td>
</tr>
<tr>
<td>alga 37, 46, 61, 167</td>
</tr>
<tr>
<td>animal 50, 61, 119, 178</td>
</tr>
<tr>
<td>antibiotic 109, 143, 167</td>
</tr>
<tr>
<td>archae 38, 145</td>
</tr>
<tr>
<td>Babesh-Ernst bodies 53</td>
</tr>
<tr>
<td>bacteria 16, 17, 22, 24, 25, 34, 61, 95</td>
</tr>
<tr>
<td>basic dyes 22, 53</td>
</tr>
<tr>
<td>biofilm 103, 108</td>
</tr>
<tr>
<td>bioremediation 183</td>
</tr>
<tr>
<td>bone 119, 121, 181, 189</td>
</tr>
<tr>
<td>brain 84, 119, 179</td>
</tr>
<tr>
<td>blood 84, 120, 179</td>
</tr>
<tr>
<td>branched phosphate 4, 7</td>
</tr>
<tr>
<td>Ca^{2+}-ATPase 50, 101</td>
</tr>
<tr>
<td>cancer 120</td>
</tr>
<tr>
<td>catalase 112</td>
</tr>
<tr>
<td>cell capsule 104</td>
</tr>
<tr>
<td>cell envelope 76, 103</td>
</tr>
<tr>
<td>cell surface 53</td>
</tr>
<tr>
<td>cell wall 58, 59</td>
</tr>
<tr>
<td>chain length 5, 32, 49, 51, 54, 67, 85</td>
</tr>
<tr>
<td>channel 50</td>
</tr>
<tr>
<td>chemical properties 9–11</td>
</tr>
<tr>
<td>chloroplast 63, 198</td>
</tr>
<tr>
<td>chromatography 19–20, 48, 63</td>
</tr>
<tr>
<td>chromatophore 176</td>
</tr>
<tr>
<td>colorimetric method 20–21</td>
</tr>
<tr>
<td>compartmentalization 53</td>
</tr>
<tr>
<td>condenced phosphate 3, 5</td>
</tr>
<tr>
<td>cotton 44, 63</td>
</tr>
<tr>
<td>cyanobacteria 24, 38, 54, 138</td>
</tr>
<tr>
<td>cyclophosphate 4, 19, 85</td>
</tr>
<tr>
<td>cytochemical method 22–24</td>
</tr>
<tr>
<td>cytological method 54</td>
</tr>
<tr>
<td>cytosol 56, 61</td>
</tr>
<tr>
<td>cytoplasm 98, 100</td>
</tr>
<tr>
<td>cytoplasmic membrane 57</td>
</tr>
<tr>
<td>DAPI (4'-6-diamino-2-phenylindole) 23, 24, 53, 57</td>
</tr>
<tr>
<td>degradosome 107, 108, 121</td>
</tr>
<tr>
<td>diadenosine tetraphosphate 117</td>
</tr>
<tr>
<td>diadenosine-5',5''''-P1,P 4 tetraphosphate a,b-phosphorylase (AP4 phosphorylase) 68, 117</td>
</tr>
<tr>
<td>divalent metal ions (cations) 50, 78</td>
</tr>
<tr>
<td>ΔμH^+ 95, 198</td>
</tr>
<tr>
<td>DNA 49, 50, 103, 118</td>
</tr>
<tr>
<td>dolichyl-diphosphate:polyphosphate phosphotransferase 71, 72, 145</td>
</tr>
<tr>
<td>dolichyl phosphate 71, 105</td>
</tr>
<tr>
<td>EBPR (Enhanced Biological Phosphate Removal) 24, 183–186</td>
</tr>
<tr>
<td>EDTA 49, 80</td>
</tr>
<tr>
<td>electrophoresis 31–33, 48</td>
</tr>
<tr>
<td>electron microscopy 54</td>
</tr>
<tr>
<td>embryos 44</td>
</tr>
<tr>
<td>endoplasmic reticulum 61</td>
</tr>
<tr>
<td>endopolyphosphatase (polyphosphate depolymerase) 86, 87, 94, 119</td>
</tr>
<tr>
<td>energy source 94, 152</td>
</tr>
<tr>
<td>enzymatic method 33–34</td>
</tr>
<tr>
<td>erythrocyte 120, 180</td>
</tr>
<tr>
<td>evolution 122, 191, 193</td>
</tr>
<tr>
<td>eubacteria 38</td>
</tr>
</tbody>
</table>
Subject Index

eucaryotes 55, 56, 59, 118, 123
exopolyphosphatase (polyphosphate phosphohydrolase) 34, 50, 75, 94
extraction 15–17
fertilizer 190
fibroblast 120
fibroblast growth factor 120
FISH analysis 24
Flagella 104, 112, 121
food industry 190
fungi 25, 30, 41, 50, 165
Fura-2 22
Graham’s salt 4–7
gene activity 49, 108
gemmule 179
histone 50
human immunodeficiency virus 120
imago stage 44
inhibitor 78, 150
insects 44, 178
kidney 119, 179
Kuroll’s salt 5, 7, 10
larvae 44
liver 84, 108, 119, 179
lung 119, 179
localization 53–59
lysozyme 69, 120
Maddrell’s salt 10
maize roots 44
Mann 105, 151
membrane transport 99
metachromatic granules 53, 54, 62
metaphosphate 3
methylene blue 22, 23
Michaelis constant 78
mitochondria 58, 61, 96, 122, 150
moses 43
motility 104, 112, 113, 116
mRNA 115
NAD kinase (ATP:NAD 2′-phosphotransferase) 75
Nile blue 23
Nuclear magnetic resonance (NMR) 26–31, 57, 61, 161
nuclei (nucleus) 50, 63, 78, 120
nucleoid 54
nucleotide 59, 114
operon 115
orthophosphate 5, 59
osteoblast 84, 120, 180
pathogenesis 104, 113
periplasm 53, 101
PHA (polyhydroxyalkanoate) 23, 46, 47, 48, 55
phosphate limitation 132
phosphate overplus 54, 56, 94
phosphate reserve 91
phosphate starvation 153
3-phospho-D-glyceroyl-phosphate: polyphosphate phosphotransferase 70, 71, 96
phosphorus starvation 91
phospholipids 58, 59
photosynthesis 54
physico-chemical properties 12–13
plant 44, 119, 177
plasma membrane 53, 57
polyP:AMP phosphotransferase 87
poly-β-hydroxybutyrate (PHB) 54, 101
polyphosphate kinase (polyphosphate:ADP phosphotransferase) 33, 34, 65–69, 107, 165, 187
polyphosphate /Ca2+-polyhydroxybutyrate complex (PolyP/PHB complex) 46–48, 99–103
PolyP-ribonucleic acid complex 46–50
PolyP-zirconia 50
polyphosphate (PolyP)-accumulating bacteria 53, 94
polyphosphate-glucose phosphotransferase (PolyP glucokinase) 50, 73, 74, 187
porin 93
ppk gene 65–69, 97, 104, 115, 189
ppx gene 75, 97, 112, 114, 115, 117
ppGpp (guanosine-3,5-bisphosphate) 77, 109, 115, 132
pppGpp 77, 115
proliferation 121
protease Lon 50, 114
protein phosphorylation 108
proton motive force 95
protoplast 57
prokaryotes 38, 53, 123
protozoa 43, 46, 83, 175
pyrophosphate 5, 12, 19, 20, 22, 26, 28, 190, 198
pyrophosphatase 86
quorum sensing 113, 116
relA gene 108
reticulum 7
ribosome 54, 58, 109, 116
RNA 47–49, 117
RNA polymerase 107, 109, 111, 112, 115
RNA-world 197
S-adenosylmethionine synthetase 86
second messenger 117
SOS genes 110
spheroplast 57, 150
sponge 84
spoT gene 108
starvation 91, 114
Sudan black 23
stomathology 189
stress 108, 109, 114, 131, 175
stringent response 108, 113, 117
structure 3, 4, 8
sugar phosphates 59
thilakoid 54
triphosphatase (tripolyphosphatase) 85, 86
ultraphosphate 4, 7
uncoupler 95
vacuole 27, 31, 32, 46, 61, 94, 98, 150
volutin granules 22, 31, 53, 61, 98, 122
virulence 103, 113, 116
viscosity 12
wastewater 186
X-ray analysis 24, 25, 26, 54
yeast 17, 24, 27, 30, 31, 37, 32, 34, 46, 48, 50, 96, 147